Nanoporous polymeric photonic crystals by emulsion holography

被引:16
作者
Hsiao, Vincent K. S. [2 ]
Yong, Ken-Tye [1 ]
Cartwright, Alexander N. [1 ]
Swihart, Mark T. [1 ]
Prasad, Paras N. [1 ,3 ]
Lloyd, Pamela F. [4 ]
Bunning, Timothy J. [5 ]
机构
[1] SUNY Buffalo, Inst Lasers Photon & Biophoton, Buffalo, NY 14260 USA
[2] Natl Chi Nan Univ, Dept Appl Mat & Optoelectron Engn, Nantou Hsien 54561, Taiwan
[3] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
[4] Universal Energy Syst Inc, Dayton, OH 45432 USA
[5] USAF, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
关键词
ORDERED MACROPOROUS MATERIALS; GRATINGS; PHASE; FABRICATION; SPHERES;
D O I
10.1039/b823247d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the holographic photopatterning of a microemulsion with a formamide polar phase and an acrylate monomer-containing nonpolar phase to produce polymer structures with periodic nanoscale porosity. Formamide is a highly polar solvent that forms well dispersed, nonaqueous emulsion droplets within the monomer-containing nonpolar phase before holographic patterning. Photochemically initiated polymerization of the nonpolar phase generates ordered structures defined by the holographic interference. Evaporation of the formamide from this lamellar structure yields a multilayered stack that acts as a photonic crystal (PC) with high optical reflectivity and a wide reflection bandwidth. The size of formamide droplets in the photopolymer fluid must be controlled to have a narrow distribution and peak near 60 nm to fabricate PC with high reflectivity. Addition of a sodium dioctyl sulfosuccinate (AOT) surfactant helps to stabilize the formamide microemulsion which further facilitates the formation of ordered nanopores with a uniform size.
引用
收藏
页码:3998 / 4003
页数:6
相关论文
共 50 条
  • [41] Spatial filtering with photonic crystals
    Maigyte, Lina
    Staliunas, Kestutis
    APPLIED PHYSICS REVIEWS, 2015, 2 (01):
  • [42] Topological photonic crystals: a review
    Wang, Hongfei
    Gupta, Samit Kumar
    Xie, Biye
    Lu, Minghui
    FRONTIERS OF OPTOELECTRONICS, 2020, 13 (01) : 50 - 72
  • [43] Monodisperse, Polymeric Nano- and Microsieves Produced with Interference Holography
    Prenen, An Maria
    van der Werf, J. C. A. 'Hans'
    Bastiaansen, Cornelis W. M.
    Broer, Dick J.
    ADVANCED MATERIALS, 2009, 21 (17) : 1751 - 1755
  • [44] Tunable optical stop band of silica shell photonic crystals
    Jiang, Qingsong
    Li, Kang
    Wei, Helin
    Yi, Lin
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2013, 67 (03) : 565 - 572
  • [45] Dimer-Based Three-Dimensional Photonic Crystals
    Hosein, Ian D.
    Lee, Stephanie H.
    Liddell, Chekesha M.
    ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (18) : 3085 - 3091
  • [46] Assembly of Optical-Scale Dumbbells into Dense Photonic Crystals
    Forster, Jason D.
    Park, Jin-Gyu
    Mittal, Manish
    Noh, Heeso
    Schreck, Carl F.
    O'Hern, Corey S.
    Cao, Hui
    Furst, Eric M.
    Dufresne, Eric R.
    ACS NANO, 2011, 5 (08) : 6695 - 6700
  • [47] Photon transparency in metallic photonic crystals doped with an ensemble of nanoparticles
    Singh, Mahi R.
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [48] Photonic Stopband Tuning in Metallo-Dielectric Photonic Crystals
    Lonergan, Alex
    Murphy, Breda
    O'Dwyer, Colm
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2021, 10 (08)
  • [49] Optical and electro-optical properties of photonic crystals based on polymer-dispersed liquid crystals
    Li, M. -S.
    Huang, S. -Y.
    Wu, S. -T.
    Lin, H. -C.
    Fuh, A. Y. -G.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 101 (1-2): : 245 - 252
  • [50] Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application
    Ryu, Seong Ho
    Gim, Min-Jun
    Lee, Wonsuk
    Choi, Suk-Won
    Yoon, Dong Ki
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) : 3186 - 3191