Nanoporous polymeric photonic crystals by emulsion holography

被引:16
作者
Hsiao, Vincent K. S. [2 ]
Yong, Ken-Tye [1 ]
Cartwright, Alexander N. [1 ]
Swihart, Mark T. [1 ]
Prasad, Paras N. [1 ,3 ]
Lloyd, Pamela F. [4 ]
Bunning, Timothy J. [5 ]
机构
[1] SUNY Buffalo, Inst Lasers Photon & Biophoton, Buffalo, NY 14260 USA
[2] Natl Chi Nan Univ, Dept Appl Mat & Optoelectron Engn, Nantou Hsien 54561, Taiwan
[3] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
[4] Universal Energy Syst Inc, Dayton, OH 45432 USA
[5] USAF, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
关键词
ORDERED MACROPOROUS MATERIALS; GRATINGS; PHASE; FABRICATION; SPHERES;
D O I
10.1039/b823247d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the holographic photopatterning of a microemulsion with a formamide polar phase and an acrylate monomer-containing nonpolar phase to produce polymer structures with periodic nanoscale porosity. Formamide is a highly polar solvent that forms well dispersed, nonaqueous emulsion droplets within the monomer-containing nonpolar phase before holographic patterning. Photochemically initiated polymerization of the nonpolar phase generates ordered structures defined by the holographic interference. Evaporation of the formamide from this lamellar structure yields a multilayered stack that acts as a photonic crystal (PC) with high optical reflectivity and a wide reflection bandwidth. The size of formamide droplets in the photopolymer fluid must be controlled to have a narrow distribution and peak near 60 nm to fabricate PC with high reflectivity. Addition of a sodium dioctyl sulfosuccinate (AOT) surfactant helps to stabilize the formamide microemulsion which further facilitates the formation of ordered nanopores with a uniform size.
引用
收藏
页码:3998 / 4003
页数:6
相关论文
共 50 条
  • [1] Graded photonic crystals by optical interference holography
    Han, Chunrui
    Tam, Wing Yim
    JOURNAL OF OPTICS, 2012, 14 (08)
  • [2] Deformation behavior of polymeric colloidal photonic crystals induced by UV irradiation
    Kim, Mun Ho
    Byun, Doo-Jin
    Song, Si-Yong
    Shin, Sei-Moon
    Kwak, Su Kyoung
    Choi, Kil-Yeong
    MACROMOLECULAR RESEARCH, 2013, 21 (12) : 1366 - 1371
  • [3] Tunable photonic crystals from emulsion containing magnetic nanoparticles
    Xia, Hong
    Xu, Binbin
    Zhang, Hao
    Zhang, Lu
    Liu, Xiaoming
    MATERIALS LETTERS, 2012, 66 (01) : 29 - 32
  • [4] Temperature Tunable 4D Polymeric Photonic Crystals
    De Bellis, Isabella
    Martella, Daniele
    Parmeggiani, Camilla
    Wiersma, Diederik Sybolt
    Nocentini, Sara
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (39)
  • [5] Optical engineering of nanoporous photonic crystals by Gaussian-Like pulse anodization
    Liu, Lina
    Lim, Siew Yee
    Law, Cheryl Suwen
    Acosta, Laura K.
    Jin, Bo
    Abell, Andrew D.
    Marsal, Lluis F.
    Ni, Gang
    Santos, Abel
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 312
  • [6] Bright structural coloration from organic polymeric photonic crystals with robust heat-resistance
    Li, Feihu
    Tang, Bingtao
    Wu, Suli
    Ma, Wei
    Zhang, Shufen
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (37) : 9806 - 9811
  • [7] Engineering of Hybrid Nanoporous Anodic Alumina Photonic Crystals by Heterogeneous Pulse Anodization
    Lim, Siew Yee
    Law, Cheryl Suwen
    Marsal, Lluis F.
    Santos, Abel
    SCIENTIFIC REPORTS, 2018, 8
  • [8] Ultrafast volume holography for stretchable photonic structures
    Tham, Nicholas Cheng Yang
    Sahoo, Pankaj K.
    Kim, Young-Jin
    Murukeshan, Vadakke Matham
    OPTICS EXPRESS, 2019, 27 (09): : 12196 - 12212
  • [9] Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin
    Dai, Rui
    Chen, Shujing
    Ren, Zhi
    Wang, Zhaona
    Liu, Dahe
    APPLIED PHYSICS B-LASERS AND OPTICS, 2012, 109 (01): : 15 - 18
  • [10] Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization
    Law, Cheryl Suwen
    Santos, Abel
    Nemati, Mandieh
    Losic, Dusan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (21) : 13542 - 13554