Swarm intelligence-based optimisation algorithms: an overview and future research issues

被引:21
作者
Hu, Jinqiang [1 ]
Wu, Husheng [1 ]
Zhong, Bin [1 ]
Xiao, Renbin [2 ]
机构
[1] Armed Police Force Engn Univ, Sch Equipment Management & Support, Xian 710086, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
swarm intelligence; optimisation algorithm; universality; theoretical analysis; hybridisation strategy; complex optimisation problems; BEE COLONY ALGORITHM; CUCKOO SEARCH ALGORITHM; PIGEON-INSPIRED OPTIMIZATION; MIN ANT SYSTEM; DIFFERENTIAL EVOLUTION; PARAMETER ADAPTATION; CONVERGENCE ANALYSIS; SERVICE COMPOSITION; LOCAL SEARCH; HYBRID;
D O I
10.1504/IJAAC.2020.110077
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Swarm intelligence-based optimisation algorithms, inspired by the collective intelligent behaviours of biology groups, have been widely recognised as efficient optimisers for many complex problems, e.g., dynamic optimisation problems, large-scale optimisation problems and many-objective optimisation problems. Swarm intelligence-based algorithms are the generic concepts to represent a range of metaheuristics with population-based iterative process, guided random search and parallel processing. This paper conducts an in-depth analysis of universality and difference of existing swarm intelligence-based algorithms. It also provides a systematical survey of some well-known algorithms. In addition, the expected research issues such as theoretical analysis, hybridisation strategy and complex problems optimisation are discussed thoroughly to inspire future study and more extensive applications.
引用
收藏
页码:656 / 693
页数:38
相关论文
共 239 条
[61]  
Eberhart R., 1995, P 6 INT S MICR HUM S, P39, DOI DOI 10.1109/MHS.1995.494215
[62]   Parameter tuning for configuring and analyzing evolutionary algorithms [J].
Eiben, A. E. ;
Smit, S. K. .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) :19-31
[63]  
Eiben A.E., 2015, INTRO EVOLUTIONARY C, V3, P25, DOI [10.1007/978-3-662-44874-8_3, DOI 10.1007/978-3-662-44874-8_3]
[64]   A survey of swarm intelligence for portfolio optimization: Algorithms and applications [J].
Ertenlice, Okkes ;
Kalayci, Can B. .
SWARM AND EVOLUTIONARY COMPUTATION, 2018, 39 :36-52
[65]   A new indicator-based many-objective ant colony optimizer for continuous search spaces [J].
Falcon-Cardona, Jesus Guillermo ;
Coello, Carlos A. Coello .
SWARM INTELLIGENCE, 2017, 11 (01) :71-100
[66]   A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling [J].
Fang, Na ;
Zhou, Jianzhong ;
Zhang, Rui ;
Liu, Yi ;
Zhang, Yongchuan .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 62 :617-629
[67]   Multi-objective quantum-behaved particle swarm optimization for economic environmental hydrothermal energy system scheduling [J].
Feng, Zhong-kai ;
Niu, Wen-jing ;
Cheng, Chun-tian .
ENERGY, 2017, 131 :165-178
[68]  
Fister I, 2015, ADAPT LEARN OPTIM, V18, P3, DOI 10.1007/978-3-319-14400-9_1
[69]   Solving symmetric and asymmetric TSPs by Ant Colonies [J].
Gambardella, LM ;
Dorigo, M .
1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, :622-627
[70]   Development and validation of different hybridization strategies between GA and PSO [J].
Gandelli, A. ;
Grimaccia, F. ;
Mussetta, M. ;
Pirinoli, P. ;
Zich, R. E. .
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, :2782-+