Competition between insertion of Li+ and Mg2+: An example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries

被引:76
作者
Meng, Yuan [1 ]
Wang, Dashuai [1 ]
Wei, Yingjin [1 ]
Zhu, Kai [1 ]
Zhao, Yingying [1 ]
Bian, Xiaofei [1 ]
Du, Fei [1 ]
Liu, Bingbing [2 ]
Gao, Yu [1 ]
Chen, Gang [1 ,2 ]
机构
[1] Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China
[2] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanium dioxide bronze; Positive electrode; Magnesium ion battery; Hybrid-ion battery; First-principles calculations; Electrochemical properties; MAGNESIUM BOROHYDRIDE/TETRAGLYME ELECTROLYTE; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; STRUCTURAL-ANALYSIS; TITANIUM-DIOXIDE; CATHODE MATERIAL; LITHIUM; ANODE; PERFORMANCE;
D O I
10.1016/j.jpowsour.2017.02.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanium dioxide bronze (TiO2-B) nanowires were prepared by the hydrothermal method and used as the positive electrode for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries. First-principles calculations showed that the diffusion barrier for Mg2+ (0.6 eV) in the TiO2-B lattice was more than twice of that for Li+ (0.3 eV). Electrochemical impedance spectroscopy showed that the charge transfer resistance of TiO2-B in the Mg2+ ion electrolyte was much larger than that in the Li+/Mg2+ hybrid electrolyte. For these reasons, the Mg rechargeable battery showed a small discharge capacity of 35 mAh g(-1) resulting from an electrochemical double-layer capacitive process. In comparison, the TiO2-B nanowires exhibited a large capacity (242 mAh g(-1) at the 20 mA g(-1) current density), high rate capability (114 mAh g(-1) at 1 A g(-1)), and excellent cycle stability in the Li+/Mg2+ hybrid-ion battery. The dominant reaction occurred in the TiO2-B electrode was intercalation of Li+ ions, of which about 74% of the total capacity was attributed to Li+ pseudo-capacitance. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 142
页数:9
相关论文
共 28 条
  • [21] A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte
    Su, Shuojian
    Huang, Zhenguo
    Nuli, Yanna
    Tuerxun, Felure
    Yang, Jun
    Wang, Jiulin
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (13) : 2641 - 2644
  • [22] An ab initio study of lithium diffusion in titanium disulfide nanotubes
    Tibbetts, Kevin
    Miranda, Caetano R.
    Meng, Ying S.
    Ceder, Gerbrand
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (22) : 5302 - 5308
  • [23] High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries
    Tuerxun, Feilure
    Abulizi, Yasen
    NuLi, Yanna
    Su, Shuojian
    Yang, Jun
    Wang, JiuLin
    [J]. JOURNAL OF POWER SOURCES, 2015, 276 : 255 - 261
  • [24] Structural analysis of electrolyte solutions comprising magnesium-aluminate chloro-organic complexes by Raman spectroscopy
    Vestfried, Yulia
    Chusid, Orit
    Goffer, Yossi
    Aped, Pinchas
    Aurbach, Doron
    [J]. ORGANOMETALLICS, 2007, 26 (13) : 3130 - 3137
  • [25] Sponge-Like Porous Manganese(II,III) Oxide as a Highly Efficient Cathode Material for Rechargeable Magnesium Ion Batteries
    Wang, Lu
    Asheim, Karina
    Vullum, Per Erik
    Svensson, Ann Mari
    Vullum-Bruer, Fride
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (18) : 6459 - 6470
  • [26] Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder
    Yan, Xiao
    Zhang, Yongquan
    Zhu, Kai
    Gao, Yu
    Zhang, Dong
    Chen, Gang
    Wang, Chunzhong
    Wei, Yingjin
    [J]. JOURNAL OF POWER SOURCES, 2014, 246 : 95 - 102
  • [27] Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries
    Zhang, Yongquan
    Fu, Qiang
    Xu, Qiaoling
    Yan, Xiao
    Zhang, Rongyu
    Guo, Zhendong
    Du, Fei
    Wei, Yingjin
    Zhang, Dong
    Chen, Gang
    [J]. NANOSCALE, 2015, 7 (28) : 12215 - 12224
  • [28] Pseudocapacitive lithium storage in TiO2(B)
    Zukalová, M
    Kalbác, M
    Kavan, L
    Exnar, I
    Graetzel, M
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (05) : 1248 - 1255