Global asymptotical stability of a n+1 dimensional Leslie-Gower predator-prey model

被引:1
作者
Yang, Wensheng [1 ]
Li, Xuepeng [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Fujian, Peoples R China
关键词
Prey refuge; Proportional harvesting; Biological resources; Lyapunov function; Global asymptotical stability; QUALITATIVE-ANALYSIS; FUNCTIONAL-RESPONSE; REFUGE; SYSTEMS;
D O I
10.1016/j.amc.2014.02.102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing suitable Lyapunov function, we obtain the global asymptotical stability of n + 1 dimensional Leslie-Gower predator-prey models. It is shown that the prey refuge and the proportional harvesting have no influence on the global asymptotical stability of the system, but they can change the position of the unique interior equilibrium. Finally, mathematic analysis shows that if we choose and control the harvesting efforts e; e(i) appropriately, we can not only harvest the biological resources and achieve the economic interest, but also protect the biological resources. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 382
页数:6
相关论文
共 21 条
  • [11] LESLIE PH, 1958, BIOMETRIKA, V45, P16, DOI 10.1093/biomet/45.1-2.16
  • [12] Stability and instability analysis for a ratio-dependent predator-prey system with diffusion effect
    Liao, Maoxin
    Tang, Xianhua
    Xu, Changjin
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (03) : 1616 - 1626
  • [13] Stochastic Lotka-Volterra systems with Levy noise
    Liu, Meng
    Wang, Ke
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) : 750 - 763
  • [14] Dynamics of a Leslie-Gower Holling-type II predator-prey system with Levy jumps
    Liu, Meng
    Wang, Ke
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 204 - 213
  • [15] Analysis of a stochastic autonomous mutualism model
    Liu, Meng
    Wang, Ke
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 392 - 403
  • [16] Ma Z, 2010, Ph.D. Thesis
  • [17] Pielou E., 1977, MATH ECOLOGY
  • [18] Ratio-dependent predator-prey model of interacting population with delay effect
    Sarwardi, Sahabuddin
    Haque, Mainul
    Mandal, Prashanta Kumar
    [J]. NONLINEAR DYNAMICS, 2012, 69 (03) : 817 - 836
  • [19] Stability analysis of diffusive predator-prey model with modified Leslie-Gower and Holling-type III schemes
    Tian, Yanling
    Weng, Peixuan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (07) : 3733 - 3745
  • [20] Bifurcation and chaos of a delayed predator-prey model with dormancy of predators
    Wang, Jingnan
    Jiang, Weihua
    [J]. NONLINEAR DYNAMICS, 2012, 69 (04) : 1541 - 1558