High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics

被引:51
作者
Allampalli, Vasanth [1 ]
Hixon, Ray [1 ]
Nallasamy, M. [2 ]
Sawyer, Scott D. [3 ]
机构
[1] Univ Toledo, MIME Dept, Toledo, OH 43606 USA
[2] ASRC Aerosp, Kennedy Space Ctr, FL 32899 USA
[3] Univ Akron, Dept Mech Engn, Akron, OH 44325 USA
关键词
Time marching schemes; Optimized Runge-Kutta method; 2N-storage Runge-Kutta scheme; Computational aeroacoustics; High stability; Wave propagation; Explicit methods; Inviscid stability limit; Numerical wave number analysis; Numerical error; FINITE-DIFFERENCE SCHEMES; LOW-DISSIPATION; ACOUSTICS; RESOLUTION;
D O I
10.1016/j.jcp.2009.02.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In many realistic calculations, the computational grid spacing required to resolve the mean flow gradients is much smaller than the grid spacing required to resolve the unsteady propagating waves of interest. Because of this, the high temporal resolution provided by existing optimized time marching schemes can be excessive due to the small time step required for stability in regions of clustered grid. In this work, explicit fourth-order accurate Runge-Kutta time marching schemes are optimized to increase the inviscid stability limit rather than the accuracy at large time steps. Single and multiple-step optimized schemes are developed and analyzed. The resulting schemes are validated on several realistic benchmark problems. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3837 / 3850
页数:14
相关论文
共 22 条
[1]  
[Anonymous], 1994, ICASE LARC WORKSH BE
[2]  
BUTCHER J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[3]   A new minimum storage Runge-Kutta scheme for computational acoustics [J].
Calvo, M ;
Franco, JM ;
Rández, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) :1-12
[4]  
Dahl M.D., 2000, 3 COMP AER CAA WORKS
[5]  
Dahl MiloD., 2004, NASA/CP-2004-212954
[6]  
Hixon R., 2004, International Journal of Aeroacoustics, V3, P379, DOI 10.1260/1475472043499263
[7]   Application of a nonlinear computational aeroacoustics code to the gust-airfoil problem [J].
Hixon, R ;
Golubev, V ;
Mankbadi, RR ;
Scott, JR ;
Sawyer, S ;
Nallasamy, M .
AIAA JOURNAL, 2006, 44 (02) :323-328
[8]   Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics [J].
Hu, FQ ;
Hussaini, MY ;
Manthey, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (01) :177-191
[9]  
Jameson A., 1991, AIAA 10 COMPUTATIONA
[10]   SEVERAL NEW NUMERICAL-METHODS FOR COMPRESSIBLE SHEAR-LAYER SIMULATIONS [J].
KENNEDY, CA ;
CARPENTER, MH .
APPLIED NUMERICAL MATHEMATICS, 1994, 14 (04) :397-433