Convolutional Neural Network With Shape Prior Applied to Cardiac MRI Segmentation

被引:139
作者
Zotti, Clement [1 ]
Luo, Zhiming [1 ,4 ]
Lalande, Alain [2 ,3 ]
Jodoin, Pierre-Marc [1 ]
机构
[1] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Burgundy, Le2i Lab, CNRS, FRE 2005, F-21079 Dijon, France
[3] Univ Hosp Dijon, MRI Dept, F-21079 Dijon, France
[4] Xiamen Univ, Dept Cognit Sci, Xiamen 361005, Peoples R China
关键词
Cardiac MRI segmentation; convolutional neural networks; shape prior; FULLY-AUTOMATIC SEGMENTATION; LEFT-VENTRICLE; HEART; MODEL; REGRESSION;
D O I
10.1109/JBHI.2018.2865450
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a novel convolutional neural network architecture to segment images from a series of short-axis cardiac magnetic resonance slices (CMRI). The proposed model is an extension of the U-net that embeds a cardiac shape prior and involves a loss function tailored to the cardiac anatomy. Since the shape prior is computed offline only once, the execution of our model is not limited by its calculation. Our system takes as input raw magnetic resonance images, requires no manual preprocessing or image cropping and is trained to segment the endocardium and epicardium of the left ventricle, the endocardium of the right ventricle, as well as the center of the left ventricle. With its multiresolution grid architecture, the network learns both high and low-level features useful to register the shape prior as well as accurately localize the borders of the cardiac regions. Experimental results obtained on the Automatic Cardiac Diagnostic Challenge Medical Image Computing and Computer Assisted Intervention (ACDC-MICCAI) 2017 dataset show that our model segments multislices CMRI (left and right ventricle contours) in 0.18 s with an average Dice coefficient of 0.91 and an average 3-D Hausdorff distance of 9.5 mm.
引用
收藏
页码:1119 / 1128
页数:10
相关论文
共 60 条
[1]  
[Anonymous], 2017, INT WORKSH STAT ATL
[2]  
[Anonymous], 2015, MULTIMODALITY CARDIA
[3]   Semi-automated left ventricular segmentation based on a guide point model approach for 3D cine DENSE cardiovascular magnetic resonance [J].
Auger, Daniel A. ;
Zhong, Xiaodong ;
Epstein, Frederick H. ;
Meintjes, Ernesta M. ;
Spottiswoode, Bruce S. .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2014, 16
[4]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[5]   Multi-atlas segmentation with augmented features for cardiac MR images [J].
Bai, Wenjia ;
Shi, Wenzhe ;
Ledig, Christian ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :98-109
[6]   An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Pollefeys, Marc ;
Konukoglu, Ender .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :111-119
[7]   Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure [J].
Ben Ayed, Ismail ;
Chen, Hua-mei ;
Punithakumar, Kumaradevan ;
Ross, Ian ;
Li, Shuo .
MEDICAL IMAGE ANALYSIS, 2012, 16 (01) :87-100
[8]  
Bernard O, 2017, ACDC MICCAI 2017 WEB
[9]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[10]   Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography [J].
Bernard, Olivier ;
Bosch, Johan G. ;
Heyde, Brecht ;
Alessandrini, Martino ;
Barbosa, Daniel ;
Camarasu-Pop, Sorina ;
Cervenansky, Frederic ;
Valette, Sebastien ;
Mirea, Oana ;
Bernier, Michel ;
Jodoin, Pierre-Marc ;
Domingos, Jaime Santo ;
Stebbing, Richard V. ;
Keraudren, Kevin ;
Oktay, Ozan ;
Caballero, Jose ;
Shi, Wei ;
Rueckert, Daniel ;
Milletari, Fausto ;
Ahmadi, Seyed-Ahmad ;
Smistad, Erik ;
Lindseth, Frank ;
van Stralen, Maartje ;
Wang, Chen ;
Smedby, Orjan ;
Donal, Erwan ;
Monaghan, Mark ;
Papachristidis, Alex ;
Geleijnse, Marcel L. ;
Galli, Elena ;
D'hooge, Jan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (04) :967-977