QUASI-PERIODIC SOLUTIONS FOR NON-AUTONOMOUS MKDV EQUATION

被引:1
作者
Cui, Wenyan [1 ]
Mi, Lufang [1 ]
Yin, Li [1 ]
机构
[1] Binzhou Univ, Coll Sci, Binzhou, Peoples R China
关键词
Quasi-periodic solution; non-autonomous mKdV equation; KAM theory; normal form; DE-VRIES EQUATION; SCHRODINGER-OPERATORS; KAM; CONVERGENCE; SCHEME;
D O I
10.1007/s13226-018-0271-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the non-autonomous modified Korteweg-de Vries (mKdV) equation u(t) = u(xxx) - 6f(omega t)u(2)u(x), x is an element of R/2 pi Z, where f (omega t) is real analytic and quasi-periodic in t with frequency vector omega = (omega(1), omega(2),...,omega(m)). Basing on an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, we obtain the existence of Cantor families of smooth quasi-periodic solutions.
引用
收藏
页码:313 / 337
页数:25
相关论文
共 37 条
[1]  
Ablowitz M. J., 1981, SIAM Studies in Applied Mathematics, V4, DOI 10.1137/1.9781611970883
[2]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[3]   Time quasi-periodic unbounded perturbations of Schrodinger operators and KAM methods [J].
Bambusi, D ;
Graffi, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (02) :465-480
[4]   Quasi-periodic solutions of completely resonant forced wave equations [J].
Berti, M ;
Procesi, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (06) :959-985
[5]   Recent progress on quasi-periodic lattice Schrodinger operators and Hamiltonian PDEs [J].
Bourgain, J .
RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (02) :231-246
[6]   The generalized Korteweg-de Vries equation on the half line [J].
Colliander, JE ;
Kenig, CE .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (11-12) :2187-2266
[7]   CONVERGENCE OF A HIGHER ORDER SCHEME FOR THE KORTEWEG-DE VRIES EQUATION [J].
Dutta, Rajib ;
Koley, Ujjwal ;
Risebro, Nils Henrik .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) :1963-1983
[9]   Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation [J].
Holden, Helge ;
Koley, Ujjwal ;
Risebro, Nils Henrik .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (03) :1047-1077
[10]   THE CONSTRUCTION OF QUASI-PERIODIC SOLUTIONS OF QUASI-PERIODIC FORCED SCHRODINGER EQUATION [J].
Jiao, Lei ;
Wang, Yiqian .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) :1585-1606