Short-Term Wind Power Prediction Based on CEEMDAN and Parallel CNN-LSTM

被引:7
|
作者
Yang, Zimin [1 ]
Peng, Xiaosheng [1 ]
Wei, Peijie [1 ]
Xiong, Yuhan [1 ]
Xu, Xijie [1 ]
Song, Jifeng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, Wuhan, Peoples R China
关键词
CEEMDAN; CNN-LSTM; deep learning; fine-tocoarse; neural network; wind power prediction; DECOMPOSITION;
D O I
10.1109/ICPSAsia55496.2022.9949917
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To improve the accuracy of short-term Wind Power Prediction (WPP), a novel short-term WPP method based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Fine-To-Coarse (FTC), and parallel CNN-LSTM is proposed in this paper. In the first stage, the CEEMDAN signal decomposition method is introduced to decompose wind speed sequence in different height into IMF components and the FTC signal reconstruct method is used to reorganize IMF components into a high frequency component, a low frequency component, and a trend component. In the second stage, a novel parallel CNN-LSTM neural network architecture is proposed as WPP model, in which the input feature consists both three frequency components derived in the first stage and the original wind speed sequence in different height. The results show that the proposed method is an effective short-term WPP method which improves the prediction accuracy.
引用
收藏
页码:1166 / 1172
页数:7
相关论文
共 50 条
  • [11] A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism
    Ren, Juan
    Yu, Zhongping
    Gao, Guiliang
    Yu, Guokang
    Yu, Jin
    ENERGY REPORTS, 2022, 8 : 437 - 443
  • [12] Short-Term Wind Power Prediction Based on CEEMDAN-SE and Bidirectional LSTM Neural Network with Markov Chain
    Liu, Yi
    He, Jun
    Wang, Yu
    Liu, Zong
    He, Lixun
    Wang, Yanyang
    ENERGIES, 2023, 16 (14)
  • [13] Short-Term Electricity Load Forecasting Based on NeuralProphet and CNN-LSTM
    Lu, Shuai
    Bao, Taotao
    IEEE ACCESS, 2024, 12 : 76870 - 76879
  • [14] Ultra-short-term multi-step wind power forecasting based on CNN-LSTM
    Wu, Qianyu
    Guan, Fei
    Lv, Chen
    Huang, Yongzhang
    IET RENEWABLE POWER GENERATION, 2021, 15 (05) : 1019 - 1029
  • [15] Short-Term Load Forecasting in Power System Using CNN-LSTM Neural Network
    Truong Hoang Bao Huy
    Dieu Ngoc Vo
    Khai Phuc Nguyen
    Viet Quoc Huynh
    Minh Quang Huynh
    Khoa Hoang Truong
    2023 ASIA MEETING ON ENVIRONMENT AND ELECTRICAL ENGINEERING, EEE-AM, 2023,
  • [16] Wind Power Short-Term Prediction Based on LSTM and Discrete Wavelet Transform
    Liu, Yao
    Guan, Lin
    Hou, Chen
    Han, Hua
    Liu, Zhangjie
    Sun, Yao
    Zheng, Minghui
    APPLIED SCIENCES-BASEL, 2019, 9 (06):
  • [17] Short-Term Wind Power Prediction Based on EMD-KPCA-LSTM
    Jin, Fenghua
    Ran, Jingjie
    PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON NEW ENERGY AND ELECTRICAL TECHNOLOGY, ISNEET 2023, 2024, 1255 : 145 - 156
  • [18] Short-term wind power prediction based on RR-VMD-LSTM
    Shi J.
    Zhao D.
    Wang L.
    Jiang T.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (21): : 63 - 70
  • [19] Short-term wind power prediction based on the combination of firefly optimization and LSTM
    Zhang R.
    Zheng X.
    Advanced Control for Applications: Engineering and Industrial Systems, 2024, 6 (02):
  • [20] CNN-LSTM MODELS COMBINED WITH ATTENTION MECHANISM FOR SHORT-TERM BUILDING HEATING LOAD PREDICTION
    Lan, Kun
    Xin, Xin
    Fang, Songlin
    Cao, Pangong
    JOURNAL OF GREEN BUILDING, 2023, 18 (04): : 37 - 56