Efficient privacy-preserving classification construction model with differential privacy technology

被引:17
|
作者
Zhang, Lin [1 ,2 ]
Liu, Yan [1 ]
Wang, Ruchuan [1 ,2 ]
Fu, Xiong [1 ,2 ]
Lin, Qiaomin [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Comp, Nanjing 210003, Jiangsu, Peoples R China
[2] Jiangsu High Technol Res Key Lab Wireless Sensor, Nanjing 210003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
differential privacy; data mining; privacy-preserving; decision tree; ALGORITHM;
D O I
10.21629/JSEE.2017.01.19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the problem of privacy disclosure during data mining, a new privacy-preserving decision tree classification construction model based on a differential privacy-protection mechanism is presented. An efficient classifier that uses feedback to add two types of noise via Laplace and exponential mechanisms to perturb the calculation results are introduced to the construction algorithm that provides a secure data access interface for users. Different split solutions for attributes of continuous and discrete values are provided and used to optimize the search scheme to reduce the error rate of the classifier. By choosing an available quality function with lower sensitivity for making decisions and improving the privacy budget allocation methods, the algorithm effectively resists malicious attacks that depend on the background knowledge. The potential problem of obtaining personal information by guessing unknown sensitive nodes of tree-type data is solved correspondingly. The better privacy preservation and accuracy of this new algorithm are shown by simulation experiments.
引用
收藏
页码:170 / 178
页数:9
相关论文
共 50 条
  • [31] Towards Efficient and Privacy-preserving Federated Deep Learning
    Hao, Meng
    Li, Hongwei
    Xu, Guowen
    Liu, Sen
    Yang, Haomiao
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [32] EPCS: an efficient and privacy-preserving classification service query framework for SVM
    Zhu, Hui
    Liu, Xiaoxia
    Lu, Rongxing
    Li, Hui
    SECURITY AND COMMUNICATION NETWORKS, 2016, 9 (11) : 1309 - 1320
  • [33] Design of a privacy-preserving algorithm for peer-to-peer network based on differential privacy
    Yu J.
    Ingenierie des Systemes d'Information, 2019, 24 (04): : 433 - 437
  • [34] A Privacy-Preserving Mechanism Based on Local Differential Privacy in Edge Computing
    Bi, Mengnan
    Wang, Yingjie
    Cai, Zhipeng
    Tong, Xiangrong
    CHINA COMMUNICATIONS, 2020, 17 (09) : 50 - 65
  • [35] A privacy-preserving trajectory data synthesis framework based on differential privacy
    Ma, Tinghuai
    Deng, Qian
    Rong, Huan
    Al-Nabhan, Najla
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 77
  • [36] A Pragmatic Privacy-Preserving Deep Learning Framework Satisfying Differential Privacy
    Dang T.K.
    Tran-Truong P.T.
    SN Computer Science, 5 (1)
  • [37] Differential Privacy in Privacy-Preserving Big Data and Learning: Challenge and Opportunity
    Jiang, Honglu
    Gao, Yifeng
    Sarwar, S. M.
    GarzaPerez, Luis
    Robin, Mahmudul
    SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2021, 2022, 1536 : 33 - 44
  • [38] Privacy-preserving collaborative filtering algorithm based on local differential privacy
    Bao, Ting
    Xu, Lei
    Zhu, Liehuang
    Wang, Lihong
    Li, Ruiguang
    Li, Tielei
    CHINA COMMUNICATIONS, 2021, 18 (11) : 42 - 60
  • [39] Privacy-preserving compression model for efficient IoMT ECG sharing
    Ibaida, Ayman
    Abuadbba, Alsharif
    Chilamkurti, Naveen
    COMPUTER COMMUNICATIONS, 2021, 166 : 1 - 8
  • [40] A Privacy-Preserving Pedestrian Dead Reckoning Framework Based on Differential Privacy
    Feng, Tianyi
    Zhang, Zhixiang
    Wong, Wai-Choong
    Sun, Sumei
    Sikdar, Biplab
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,