Quantum dissipation due to the interaction with chaos

被引:17
|
作者
Cohen, D [1 ]
Kottos, T
机构
[1] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
[2] Max Planck Inst Stromungsforsch, D-37073 Gottingen, Germany
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 05期
关键词
D O I
10.1103/PhysRevE.69.055201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the possibility of having "quantum dissipation" due to the interaction with chaotic degrees of freedom. We define the conditions that should be satisfied in order to have a dissipative effect similar to the one due to an interaction with a (many body) bath. We also compare with the case where the environment is modeled by a random matrix model. In the case of interaction with "chaos" we observe a regime where the relaxation process is nonuniversal and reflects the underlaying semiclassical dynamics. As an example we consider a two level system (spin) that interacts with a two-dimensional anharmonic oscillator.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] QUANTUM CHAOS
    GUTZWILLER, MC
    SCIENTIFIC AMERICAN, 1992, 266 (01) : 78 - 84
  • [42] QUANTUM DISSIPATION AND QUANTUM GROUPS
    IORIO, A
    VITIELLO, G
    ANNALS OF PHYSICS, 1995, 241 (02) : 496 - 506
  • [43] Quantum chaos
    Noriaki Horiuchi
    Nature Photonics, 2013, 7 (2) : 85 - 85
  • [44] QUANTUM CHAOS
    JENSEN, RV
    NATURE, 1992, 355 (6358) : 311 - 318
  • [45] Quantum chaos
    Bohigas, O
    NUCLEAR PHYSICS A, 2005, 751 : 343C - 372C
  • [46] Quantum chaos
    Moltenbrey, K
    COMPUTER GRAPHICS WORLD, 2001, 24 (10) : 46 - 49
  • [47] Quantum chaos and quantum computers
    Shepelyansky, DL
    PHYSICA SCRIPTA, 2001, T90 : 112 - 120
  • [48] Quantum graphs and quantum chaos
    Keating, J. P.
    ANALYSIS ON GRAPHS AND ITS APPLICATIONS, 2008, 77 : 279 - 290
  • [49] Quantum instantons and quantum chaos
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    Rubin, SG
    PHYSICS LETTERS A, 2001, 281 (01) : 1 - 8
  • [50] CHAOS AND QUANTUM CHAOS IN COSMOLOGICAL MODELS
    GRAHAM, R
    CHAOS SOLITONS & FRACTALS, 1995, 5 (07) : 1103 - 1122