Non-equilibrium molecular dynamics and continuum modelling of transient freezing of atomistic solids

被引:4
|
作者
Font, Francesc [1 ]
Micou, William [2 ]
Bresme, Fernando [2 ]
机构
[1] Ctr Recerca Matemat, Campus Bellaterra,Edif C, Bellaterra 08193, Spain
[2] Imperial Coll, Dept Chem, Mol Sci Res Hub, London W12 0BZ, England
基金
英国工程与自然科学研究理事会;
关键词
Solidification; Phase change; Phase transitions; Nanoscale; Non-equilibrium molecular dynamics; Heat transfer theory; Stefan problem; Supercooling; INTERFACES;
D O I
10.1016/j.ijheatmasstransfer.2020.120601
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work we investigate the transient solidification of a Lennard-Jones liquid using non-equilibrium molecular dynamics simulations and continuum heat transfer theory. The simulations are performed in slab-shaped boxes, where a cold thermostat placed at the centre of the box drives the solidification of the liquid. Two well-defined solid fronts propagate outwards from the centre towards the ends of the box until solidification is completed. A continuum phase change model that accounts for the difference between the solid and the liquid densities is formulated to describe the evolution of the temperature and the position of the solidification front. Simulation results for a small and a large nanoscale system, of sizes 30.27 nm and 60.54 nm, are compared with the predictions of the theoretical model. Following a transient period of similar to 20-40 ps and a displacement of the solidification front of 1-2.5 nm we find that the simulations and the continuum theory show good agreement. We use this fact to combine the simulation and theoretical approaches to design a simple procedure to calculate the latent heat associated to the liquid-solid phase transition. We also perform simulations of the homogeneous freezing process, i.e. in the absence of a temperature gradient and at constant temperature, by quenching the liquid at supercooled temperatures. We demonstrate that, for comparable temperature conditions, the solidification rate of homogenous freezing is much faster than the one obtained under a thermal gradient. Our study and conclusions should be of general interest to a wide range of atomistic solids. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Non-equilibrium molecular dynamics and continuum modelling of transient freezing of atomistic solids
    Font, Francesc
    Micou, William
    Bresme, Fernando
    International Journal of Heat and Mass Transfer, 2021, 164
  • [2] Modelling transient heat conduction in solids at multiple length and time scales: A coupled non-equilibrium molecular dynamics/continuum approach
    Jolley, Kenny
    Gill, Simon P. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (19) : 7412 - 7425
  • [3] Modelling Transient Heat Conduction at Multiple Length and Time Scales: A Coupled Non-Equilibrium Molecular Dynamics/Continuum Approach
    Jolley, Kenny
    Gill, Simon P. A.
    IUTAM SYMPOSIUM ON MODELLING NANOMATERIALS AND NANOSYSTEMS, 2009, 13 : 27 - 36
  • [4] Non-equilibrium atomic dynamics in solids
    Rao, KR
    CURRENT SCIENCE, 1998, 75 (12): : 1328 - 1337
  • [5] Ergodicity of non-equilibrium Glauber dynamics in continuum
    Kondratiev, Yuri
    Kutoviy, Oleksandr
    Minlos, Robert
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (09) : 3097 - 3116
  • [6] PLASTIC DISLOCATION-MOTION VIA NON-EQUILIBRIUM MOLECULAR AND CONTINUUM DYNAMICS
    HOOVER, WG
    LADD, AJC
    HOOVER, NE
    JOURNAL OF METALS, 1980, 32 (08): : 29 - 29
  • [7] Understanding the rheological behavior of polymer nanocomposites: Non-equilibrium thermodynamics modeling coupled with detailed atomistic non-equilibrium molecular dynamics simulations
    Stephanou, Pavlos S.
    Tsalikis, Dimitrios G.
    Skountzos, Emmanuel N.
    Mavrantzas, Vlasis G.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (14) : 27589 - 27598
  • [8] Dynamical Non-Equilibrium Molecular Dynamics
    Ciccotti, Giovanni
    Ferrario, Mauro
    ENTROPY, 2014, 16 (01): : 233 - 257
  • [9] Reverse non-equilibrium molecular dynamics
    Müller-Plathe, F
    Bordat, P
    NOVEL METHODS IN SOFT MATTER SIMULATIONS, 2004, 640 : 310 - 326
  • [10] NON-EQUILIBRIUM MOLECULAR-DYNAMICS
    HOOVER, WG
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1983, 34 : 103 - 127