Scaling behavior of entanglement in two- and three-dimensional free-fermion systems

被引:107
作者
Li, Weifei [1 ]
Ding, Letian
Yu, Rong
Roscilde, Tommaso
Haas, Stephan
机构
[1] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
关键词
D O I
10.1103/PhysRevB.74.073103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Exactly solving a spinless fermionic system in two and three dimensions, we investigate the scaling behavior of the block entropy in critical and noncritical phases. The scaling of the block entropy crucially depends on the nature of the excitation spectrum of the system and on the topology of the Fermi surface. Noticeably, in the critical phases the scaling violates the area law and acquires a logarithmic correction only when a well-defined Fermi surface exists in the system. When the area law is violated, we accurately verify a conjecture for the prefactor of the logarithmic correction, proposed by D. Gioev and I. Klich.
引用
收藏
页数:4
相关论文
共 24 条
[1]  
BARTHEL T, CONDMAT0602077
[2]  
BURKARD G, 2006, HDB THEORETICAL COMP
[3]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[4]   Density-matrix spectra of solvable fermionic systems [J].
Chung, MC ;
Peschel, I .
PHYSICAL REVIEW B, 2001, 64 (06)
[5]   Entanglement-area law for general bosonic harmonic lattice systems [J].
Cramer, M ;
Eisert, J ;
Plenio, MB ;
Dreissig, J .
PHYSICAL REVIEW A, 2006, 73 (01)
[6]   Entanglement in spin chains and lattices with long-range Ising-type interactions -: art. no. 097203 [J].
Dür, W ;
Hartmann, L ;
Hein, M ;
Lewenstein, M ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (09)
[7]   UNE DEMONSTRATION SIMPLIFIEE DU THEOREME DE WICK EN MECANIQUE STATISTIQUE [J].
GAUDIN, M .
NUCLEAR PHYSICS, 1960, 15 (01) :89-91
[8]   Entanglement entropy of fermions in any dimension and the widom conjecture [J].
Gioev, D ;
Klich, I .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[9]   Universality of entropy scaling in one dimensional gapless models [J].
Korepin, VE .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :096402-1
[10]   Scaling of entanglement entropy in the random singlet phase [J].
Laflorencie, N .
PHYSICAL REVIEW B, 2005, 72 (14)