Diversity Graphs

被引:1
作者
Blain, P. [1 ]
Davis, C. [2 ]
Holder, A. [3 ]
Silva, J. [4 ]
Vinzant, C. [5 ]
机构
[1] Swarthmore Coll Math, Swarthmore, PA USA
[2] Univ Utah Math, Salt Lake City, UT USA
[3] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN USA
[4] Univ Colorado Appl Math, Denver, CO USA
[5] Oberlin Coll Math, Oberlin, OH USA
来源
CLUSTER CHALLENGES IN BIOLOGICAL NETWORKS | 2009年
基金
美国国家科学基金会;
关键词
HAPLOTYPE INFERENCE; DIPLOID POPULATIONS; SAMPLES; ALGORITHMS; COMPLEXITY;
D O I
10.1142/9789812771667_0006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bipartite graphs have long been used to study and model matching problems, and in this paper we introduce the bipartite graphs that explain a recent matching problem in computational biology. The problem is to match haplotypes to genotypes in a way that minimizes the number of haplotypes, a problem called the Pure Parsimony problem. The goal of this work is not to address the computational or biological issues but rather to explore the mathematical structure through a study of the underlying graph theory.
引用
收藏
页码:129 / +
页数:3
相关论文
共 19 条
  • [1] [Anonymous], [No title captured]
  • [2] Asratian A. S., 1998, Cambridge Tracts in Mathematics
  • [3] BAFNA V, 2002, J COMPUTATI IN PRESS
  • [4] Perfect phylogeny haplotyper: haplotype inferral using a tree model
    Chung, RH
    Gusfield, D
    [J]. BIOINFORMATICS, 2003, 19 (06) : 780 - 781
  • [5] CHUNG RH, 2003, P 2003 COC IN PRESS
  • [6] CLARK AG, 1990, MOL BIOL EVOL, V7, P111
  • [7] Inference of haplotypes from samples of diploid populations: Complexity and algorithms
    Gusfield, D
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2001, 8 (03) : 305 - 323
  • [8] GUSFIELD D, 2000, P 8 INT C INT SYST M
  • [9] Gusfield D., 2002, PROC 6 ANN INT C COM, P166, DOI [DOI 10.1145/565196.565218., 10.1145/565196.565218, DOI 10.1145/565196.565218]
  • [10] GUSFIELD D, 2003, P 2003 COMB IN PRESS