Brauer groups and etale cohomology in derived algebraic geometry

被引:32
作者
Antieau, Benjamin [1 ]
Gepner, David
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
THEOREM; GENERATORS;
D O I
10.2140/gt.2014.18.1149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Azumaya algebras and Brauer groups in derived algebraic geometry. We establish various fundamental facts about Brauer groups in this setting, and we provide a computational tool, which we use to compute the Brauer group in several examples. In particular, we show that the Brauer group of the sphere spectrum vanishes, which solves a conjecture of Baker and Richter, and we use this to prove two uniqueness theorems for the stable homotopy category. Our key technical results include the local geometricity, in the sense of Artin n-stacks, of the moduli space of perfect modules over a smooth and proper algebra, the etale local triviality of Azumaya algebras over connective derived schemes and a local to global principle for the algebraicity of stacks of stable categories.
引用
收藏
页码:1149 / 1244
页数:96
相关论文
共 57 条
[1]  
Ando M, ARXIV11122203
[2]  
[Anonymous], COMMUTATIVE RING THE
[3]  
[Anonymous], preprint
[4]  
[Anonymous], 1967, Inst. Hautes Etudes Sci. Publ. Math., P361, DOI 10.1007/BF02732123
[5]  
Antieau B, T AM MATH S IN PRESS
[6]  
Arinkin D, ARXIV12016343
[7]   SOME ELEMENTARY EXAMPLES OF UNIRATIONAL VARIETIES WHICH ARE NOT RATIONAL [J].
ARTIN, M ;
MUMFORD, D .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1972, 25 (JUL) :75-&
[8]  
Auslander M., 1960, T AM MATH SOC, V97, P367, DOI DOI 10.2307/1993378
[9]  
AZUMAYA G., 1951, Nagoya Math. J., V2, P119
[10]  
Baker A., 2004, Algebr. Geom. Topol, V4, P623