Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries

被引:47
作者
Liu, Shan [1 ,2 ,3 ]
Fang, Haisheng [1 ,2 ,3 ]
Dai, Enrui [1 ,2 ,3 ]
Yang, Bin [1 ,2 ,3 ]
Yao, Yaochun [1 ,2 ,3 ]
Ma, Wenhui [1 ,2 ,3 ]
Dai, Yongnian [1 ,2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Natl Engn Lab Vacuum Met, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
[3] Kunming Univ Sci & Technol, State Key Lab Breeding Base Complex Nonferrous Me, Kunming 650093, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion batteries; Cathode; Lithium manganese phosphate; Carbon coating; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; CATION SUBSTITUTION; LIMNPO4; LIFEPO4; MG;
D O I
10.1016/j.electacta.2013.11.052
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A series of LiMn0.8Fe0.19Mg0.01PO4/C composites with different carbon content are synthesized and the effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C is studied. The results show that the rate capability of LiMn0.8Fe0.19Mg0.01PO4/C is highly dependent on carbon content, and the LiMn0.8Fe0.19Mg0.01PO4/C with 10.5 wt.% carbon exhibits the best coverage of carbon coating and the optimal rate performance. When the carbon content is reduced to 4.1 wt.%, the obtained LiMn0.8Fe0.19Mg0.01PO4/C still has an excellent rate capability and can deliver a discharge capacity of 138.5 mAh g(-1) at 1 C, 121.7 mAh g(-1) at 5 C and 109.6 mAh g(-1) at 10 C. This is the best rate performance reported so far for low carbon coated LiMnPO4 based materials. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 28 条
  • [1] Baddour-Hadjean R., 2010, CHEM REV, V1267, P1137
  • [2] Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons
    Bakenov, Zhumabay
    Taniguchi, Izumi
    [J]. JOURNAL OF POWER SOURCES, 2010, 195 (21) : 7445 - 7451
  • [3] Improving the performance of lithium manganese phosphate through divalent cation substitution
    Chen, Guoying
    Wilcox, James D.
    Richardson, Thomas J.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (11) : A190 - A194
  • [4] LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode
    Choi, Daiwon
    Wang, Donghai
    Bae, In-Tae
    Xiao, Jie
    Nie, Zimin
    Wang, Wei
    Viswanathan, Vilayanur V.
    Lee, Yun Jung
    Zhang, Ji-Guang
    Graff, Gordon L.
    Yang, Zhenguo
    Liu, Jun
    [J]. NANO LETTERS, 2010, 10 (08) : 2799 - 2805
  • [5] One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders
    Delacourt, C
    Poizot, P
    Morcrette, M
    Tarascon, JM
    Masquelier, C
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (01) : 93 - 99
  • [6] Effect of surface carbon structure on the electrochemical performance of LiFePO4
    Doeff, MM
    Hu, YQ
    McLarnon, F
    Kostecki, R
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (10) : A207 - A209
  • [7] Effect of particle size on LiMnPO4 cathodes
    Drezen, Thierry
    Kwon, Nam-Hee
    Bowen, Paul
    Teerlinck, Ivo
    Isono, Motoshi
    Exnar, Ivan
    [J]. JOURNAL OF POWER SOURCES, 2007, 174 (02) : 949 - 953
  • [8] LiMn0.8Fe0.19Mg0.01PO4/C as a high performance cathode material for lithium ion batteries
    Fang, Haisheng
    Dai, Enrui
    Yang, Bin
    Yao, Yaochun
    Ma, Wenhui
    [J]. JOURNAL OF POWER SOURCES, 2012, 204 : 193 - 196
  • [9] LiFexMn1-xPO4: A cathode for lithium-ion batteries
    Hong, Jian
    Wang, Feng
    Wang, Xiaoliang
    Graetz, Jason
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (07) : 3659 - 3663
  • [10] Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg
    Hu, Chenglin
    Yi, Huihua
    Fang, Haisheng
    Yang, Bin
    Yao, Yaochun
    Ma, Wenhui
    Dai, Yongnian
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (12) : 1784 - 1787