Temporal concatenation for Markov decision processes

被引:0
|
作者
Song, Ruiyang [1 ]
Xu, Kuang [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Grad Sch Business, Stanford, CA USA
关键词
Markov decision process; Stochastic dynamic programming; HORIZON;
D O I
10.1017/S0269964821000206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose and analyze a temporal concatenation heuristic for solving large-scale finite-horizon Markov decision processes (MDP), which divides the MDP into smaller sub-problems along the time horizon and generates an overall solution by simply concatenating the optimal solutions from these sub-problems. As a "black box" architecture, temporal concatenation works with a wide range of existing MDP algorithms. Our main results characterize the regret of temporal concatenation compared to the optimal solution. We provide upper bounds for general MDP instances, as well as a family of MDP instances in which the upper bounds are shown to be tight. Together, our results demonstrate temporal concatenation's potential of substantial speed-up at the expense of some performance degradation.
引用
收藏
页码:999 / 1026
页数:28
相关论文
共 50 条
  • [31] A Reinforcement Learning Method of Solving Markov Decision Processes: An Adaptive Exploration Model Based on Temporal Difference Error
    Wang, Xianjia
    Yang, Zhipeng
    Chen, Guici
    Liu, Yanli
    ELECTRONICS, 2023, 12 (19)
  • [32] Lexicographic refinements in stationary possibilistic Markov Decision Processes
    Ben Amor, Nahla
    El Khalfi, Zeineb
    Fargier, Helene
    Sabbadin, Regis
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 103 : 343 - 363
  • [33] Associative Criteria in Mutually Dependent Markov Decision Processes
    Fujita, Toshiharu
    2014 IIAI 3RD INTERNATIONAL CONFERENCE ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2014), 2014, : 147 - 150
  • [34] Transfer-Entropy-Regularized Markov Decision Processes
    Tanaka, Takashi
    Sandberg, Henrik
    Skoglund, Mikael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (04) : 1944 - 1951
  • [35] Markov decision processes with quasi-hyperbolic discounting
    Anna Jaśkiewicz
    Andrzej S. Nowak
    Finance and Stochastics, 2021, 25 : 189 - 229
  • [36] Modelling the profitability of credit cards by Markov decision processes
    So, Meko M. C.
    Thomas, Lyn C.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 212 (01) : 123 - 130
  • [37] Evolutionary policy iteration for solving Markov decision processes
    Chang, HS
    Lee, HG
    Fu, MC
    Marcus, SI
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) : 1804 - 1808
  • [38] Markov decision processes with quasi-hyperbolic discounting
    Jaskiewicz, Anna
    Nowak, Andrzej S.
    FINANCE AND STOCHASTICS, 2021, 25 (02) : 189 - 229
  • [39] Markov decision processes with iterated coherent risk measures
    Chu, Shanyun
    Zhang, Yi
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (11) : 2286 - 2293
  • [40] Experimental Design for Partially Observed Markov Decision Processes
    Thorbergsson, Leifur
    Hooker, Giles
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 549 - 567