A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting

被引:327
|
作者
Kavousi-Fard, Abdollah [1 ]
Samet, Haidar [2 ]
Marzbani, Fatemeh [3 ]
机构
[1] Islamic Azad Univ, Sarvestan Branch, Dept Elect Engn, Sarvestan, Iran
[2] Shiraz Univ, Sch Elect & Comp Engn, Shiraz, Iran
[3] Amer Univ Sharjah, Sharjah, U Arab Emirates
关键词
Support Vector Regression (SVR); Modified Firefly Algorithm (MFA); Short Term Load Forecasting (STLF); Adaptive Modification Method; MACHINES; PARAMETERS; SELECTION; SVR;
D O I
10.1016/j.eswa.2014.03.053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precise forecast of the electrical load plays a highly significant role in the electricity industry and market. It provides economic operations and effective future plans for the utilities and power system operators. Due to the intermittent and uncertain characteristic of the electrical load, many research studies have been directed to nonlinear prediction methods. In this paper, a hybrid prediction algorithm comprised of Support Vector Regression (SVR) and Modified Firefly Algorithm (MFA) is proposed to provide the short term electrical load forecast. The SVR models utilize the nonlinear mapping feature to deal with nonlinear regressions. However, such models suffer from a methodical algorithm for obtaining the appropriate model parameters. Therefore, in the proposed method the MFA is employed to obtain the SVR parameters accurately and effectively. In order to evaluate the efficiency of the proposed methodology, it is applied to the electrical load demand in Fars, Iran. The obtained results are compared with those obtained from the ARMA model, ANN, SVR-GA, SVR-HBMO, SVR-PSO and SVR-FA. The experimental results affirm that the proposed algorithm outperforms other techniques. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6047 / 6056
页数:10
相关论文
共 50 条
  • [1] Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting
    Hong, Wei-Chiang
    Fan, Guo-Feng
    ENERGIES, 2019, 12 (06):
  • [2] Construction of Training Sample in a Support Vector Regression Short-term Load Forecasting Model
    Jiao, Runhai
    Mo, Ruifang
    Lin, Biying
    Su, Chenjun
    2012 FIFTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2012), VOL 2, 2012, : 339 - 342
  • [3] Short-term load forecasting based on support vector regression and load profiling
    Sousa, Joao C.
    Jorge, Humberto M.
    Neves, Luis P.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (03) : 350 - 362
  • [4] Support Vector Regression with Chaotic Hybrid Algorithm in Cyclic Electric Load Forecasting
    Hong, Wei-Chiang
    Dong, Yucheng
    Chen, Li-Yueh
    Panigrahi, B. K.
    Wei, Shih-Yung
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 1, 2012, 130 : 833 - +
  • [5] Short Term Load Forecasting with Least Square Support Vector Regression and PSO
    Zou Min
    Tao Huanqi
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL V, 2010, : 79 - 82
  • [6] An incremental electric load forecasting model based on support vector regression
    Yang, YouLong
    Che, JinXing
    Li, YanYing
    Zhao, YanJun
    Zhu, SuLing
    ENERGY, 2016, 113 : 796 - 808
  • [7] Short-term electrical load forecasting using hybrid model of manta ray foraging optimization and support vector regression
    Li, Siwei
    Kong, Xiangyu
    Yue, Liang
    Liu, Chang
    Khan, Muhammad Ahmad
    Yang, Zhiduan
    Zhang, Honghui
    JOURNAL OF CLEANER PRODUCTION, 2023, 388
  • [8] Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression
    Hu, Zhongyi
    Bao, Yukun
    Xiong, Tao
    APPLIED SOFT COMPUTING, 2014, 25 : 15 - 25
  • [9] Support vector regression with chaos-based firefly algorithm for stock market price forecasting
    Kazem, Ahmad
    Sharifi, Ebrahim
    Hussain, Farookh Khadeer
    Saberi, Morteza
    Hussain, Omar Khadeer
    APPLIED SOFT COMPUTING, 2013, 13 (02) : 947 - 958
  • [10] A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting
    Dong, Yongquan
    Zhang, Zichen
    Hong, Wei-Chiang
    ENERGIES, 2018, 11 (04)