A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting

被引:331
作者
Kavousi-Fard, Abdollah [1 ]
Samet, Haidar [2 ]
Marzbani, Fatemeh [3 ]
机构
[1] Islamic Azad Univ, Sarvestan Branch, Dept Elect Engn, Sarvestan, Iran
[2] Shiraz Univ, Sch Elect & Comp Engn, Shiraz, Iran
[3] Amer Univ Sharjah, Sharjah, U Arab Emirates
关键词
Support Vector Regression (SVR); Modified Firefly Algorithm (MFA); Short Term Load Forecasting (STLF); Adaptive Modification Method; MACHINES; PARAMETERS; SELECTION; SVR;
D O I
10.1016/j.eswa.2014.03.053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Precise forecast of the electrical load plays a highly significant role in the electricity industry and market. It provides economic operations and effective future plans for the utilities and power system operators. Due to the intermittent and uncertain characteristic of the electrical load, many research studies have been directed to nonlinear prediction methods. In this paper, a hybrid prediction algorithm comprised of Support Vector Regression (SVR) and Modified Firefly Algorithm (MFA) is proposed to provide the short term electrical load forecast. The SVR models utilize the nonlinear mapping feature to deal with nonlinear regressions. However, such models suffer from a methodical algorithm for obtaining the appropriate model parameters. Therefore, in the proposed method the MFA is employed to obtain the SVR parameters accurately and effectively. In order to evaluate the efficiency of the proposed methodology, it is applied to the electrical load demand in Fars, Iran. The obtained results are compared with those obtained from the ARMA model, ANN, SVR-GA, SVR-HBMO, SVR-PSO and SVR-FA. The experimental results affirm that the proposed algorithm outperforms other techniques. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6047 / 6056
页数:10
相关论文
共 45 条
[1]   Short-term hourly load forecasting using abductive networks [J].
Abdel-Aal, RE .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (01) :164-173
[2]  
[Anonymous], 1995, TF380606 CIGRE, P77
[3]  
[Anonymous], 2011, P INT C EL EL ENG NA
[4]   Support vector machine with adaptive parameters in financial time series forecasting [J].
Cao, LJ ;
Tay, FEH .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1506-1518
[5]   Practical selection of SVM parameters and noise estimation for SVM regression [J].
Cherkassky, V ;
Ma, YQ .
NEURAL NETWORKS, 2004, 17 (01) :113-126
[6]  
Dianmin Zhou, 2004, Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), P1838
[7]   A hybrid method based on wavelet, ANN and ARIMA model for short- term load forecasting [J].
Fard, Abdollah Kavousi ;
Akbari-Zadeh, Mohammad-Reza .
JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2014, 26 (02) :167-182
[8]   A comprehensive review of firefly algorithms [J].
Fister, Iztok ;
Fister, Iztok, Jr. ;
Yang, Xin-She ;
Brest, Janez .
SWARM AND EVOLUTIONARY COMPUTATION, 2013, 13 :34-46
[9]   Modified firefly algorithm using quaternion representation [J].
Fister, Iztok ;
Yang, Xin-She ;
Brest, Janez ;
Fister, Iztok, Jr. .
EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (18) :7220-7230
[10]   Support vector machine as an efficient framework for stock market volatility forecasting [J].
Gavrishchaka, Valeriy V. ;
Banerjee, Supriya .
COMPUTATIONAL MANAGEMENT SCIENCE, 2006, 3 (02) :147-160