Cough augmentation techniques for extubation or weaning critically ill patients from mechanical ventilation

被引:46
作者
Rose, Louise [1 ,2 ,3 ,4 ,5 ]
Adhikari, Neill K. J. [2 ,4 ,5 ]
Leasa, David [6 ]
Fergusson, Dean A. [7 ]
Mckim, Douglas [8 ]
机构
[1] Univ Toronto, Lawrence S Bloomberg Fac Nursing, 155 Coll St, Toronto, ON M5T 1P8, Canada
[2] Univ Toronto, Interdept Div Crit Care, Toronto, ON, Canada
[3] Toronto East Gen Hosp, Prov Weaning Ctr Excellence, Toronto, ON, Canada
[4] Sunnybrook Hlth Sci Ctr, Dept Crit Care Med, Toronto, ON, Canada
[5] Sunnybrook Hlth Sci Ctr, Sunnybrook Res Inst, Toronto, ON, Canada
[6] London Hlth Sci Ctr, Dept ofMedicine, Crit Care, London, ON, Canada
[7] Ottawa Hosp, Res Inst, Clin Epidemiol Program, Ottawa, ON, Canada
[8] Ottawa Hosp, Resp Rehabil & Sleep Ctr, Ottawa, ON, Canada
来源
COCHRANE DATABASE OF SYSTEMATIC REVIEWS | 2017年 / 01期
基金
加拿大健康研究院;
关键词
INSUFFLATION-EXSUFFLATION; RESPIRATORY-FAILURE; TRACHEOSTOMY TUBE; AIR STACKING; MUSCLE AIDS; MANAGEMENT; ASSISTANCE; EFFICACY; OUTCOMES; FLOWS;
D O I
10.1002/14651858.CD011833.pub2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background There are various reasons why weaning and extubation failure occur, but ineffective cough and secretion retention can play a significant role. Cough augmentation techniques, such as lung volume recruitment or manually-and mechanically-assisted cough, are used to prevent and manage respiratory complications associated with chronic conditions, particularly neuromuscular disease, and may improve short- and long-termoutcomes for people with acute respiratory failure. However, the role of cough augmentation to facilitate extubation and prevent post-extubation respiratory failure is unclear. Objectives Our primary objective was to determine extubation success using cough augmentation techniques compared to no cough augmentation for critically-ill adults and children with acute respiratory failure admitted to a high-intensity care setting capable of managing mechanically-ventilated people (such as an intensive care unit, specialized weaning centre, respiratory intermediate care unit, or high-dependency unit). Secondary objectives were to determine the effect of cough augmentation techniques on reintubation, weaning success, mechanical ventilation and weaning duration, length of stay (high-intensity care setting and hospital), pneumonia, tracheostomy placement and tracheostomy decannulation, and mortality (high-intensity care setting, hospital, and after hospital discharge). We evaluated harms associated with use of cough augmentation techniques when applied via an artificial airway (or non-invasive mask once extubated/decannulated), including haemodynamic compromise, arrhythmias, pneumothorax, haemoptysis, andmucus plugging requiring airway change and the type of person (such as those with neuromuscular disorders or weakness and spinal cord injury) for whom these techniques may be efficacious. Search methods We searched the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 4, 2016), MEDLINE (OvidSP) (1946 to April 2016), Embase (OvidSP) (1980 to April 2016), CINAHL (EBSCOhost) (1982 to April 2016), and ISIWeb of Science and Conference Proceedings. We searched the PROSPERO and Joanna Briggs Institute databases, websites of relevant professional societies, and conference abstracts from five professional society annual congresses (2011 to 2015). We did not impose language or other restrictions. We performed a citation search using PubMed and examined reference lists of relevant studies and reviews. We contacted corresponding authors for details of additional published or unpublished work. We searched for unpublished studies and ongoing trials on the International Clinical Trials Registry Platform (apps. who. int/trialsearch) (April 2016). Selection criteria We included randomized and quasi-randomized controlled trials that evaluated cough augmentation compared to a control group without this intervention. We included non-randomized studies for assessment of harms. We included studies of adults and of children aged four weeks or older, receiving invasive mechanical ventilation in a high-intensity care setting. Data collection and analysis Two review authors independently screened titles and abstracts identified by our search methods. Two review authors independently evaluated full-text versions, independently extracted data and assessed risks of bias. Main results We screened 2686 citations and included two trials enrolling 95 participants and one cohort study enrolling 17 participants. We assessed one randomized controlled trial as being at unclear risk of bias, and the other at high risk of bias; we assessed the non-randomized study as being at high risk of bias. We were unable to pool data due to the small number of studies meeting our inclusion criteria and therefore present narrative results rather than meta-analyses. One trial of 75 participants reported that extubation success (defined as no need for reintubation within 48 hours) was higher in the mechanical insufflation-exsufflation (MI-E) group (82.9% versus 52.5%, P < 0.05) (risk ratio (RR) 1.58, 95% confidence interval (CI) 1.13 to 2.20, very low-quality evidence). No study reported weaning success or reintubation as distinct from extubation success. One trial reported a statistically significant reduction in mechanical ventilation duration favouring MI-E (mean difference -6.1 days, 95% CI -8.4 to -3.8, very low-quality evidence). One trial reported mortality, with no participant dying in either study group. Adverse events (reported by two trials) included one participant receiving the MIE protocol experiencing haemodynamic compromise. Nine (22.5%) of the control group compared to two (6%) MI-E participants experienced secretion encumbrance with severe hypoxaemia requiring reintubation (RR 0.25, 95% CI 0.06 to 1.10). In the lung volume recruitment trial, one participant experienced an elevated blood pressure for more than 30 minutes. No participant experienced newonset arrhythmias, heart rate increased by more than 25%, or a pneumothorax. For outcomes assessed using GRADE, we based our downgrading decisions on unclear risk of bias, inability to assess consistency or publication bias, and uncertainty about the estimate of effect due to the limited number of studies contributing outcome data. Authors' conclusions The overall quality of evidence on the efficacy of cough augmentation techniques for critically-ill people is very low. Cough augmentation techniques when used in mechanically-ventilated critically-ill people appear to result in few adverse events.
引用
收藏
页数:47
相关论文
共 65 条
[1]  
[Anonymous], CANADIAN AGENCY DRUG
[2]  
[Anonymous], 2014, Review Manager (RevMan) Computer Program. Version 5.3
[3]  
[Anonymous], 2015, COCHRANE DB SYST REV, DOI DOI 10.1002/14651858.CD011833
[4]  
[Anonymous], J CRITICAL CARE
[5]  
[Anonymous], 12 INT CHILD NEUR C
[6]  
[Anonymous], EUR RESP SOC ANN C 2
[7]  
Avena Katia de Miranda, 2008, J Bras Pneumol, V34, P380
[8]   Respiratory muscle aids to avert respiratory failure and tracheostomy: a new patient management paradigm [J].
Bach, John R. ;
Mehta, Anokhi D. .
JOURNAL OF NEURORESTORATOLOGY, 2014, 2 :25-35
[9]   Efficacy of Mechanical Insufflation-Exsufflation in Extubating Unweanable Subjects With Restrictive Pulmonary Disorders [J].
Bach, John R. ;
Sinquee, Diane M. ;
Saporito, Louis R. ;
Botticello, Amanda L. .
RESPIRATORY CARE, 2015, 60 (04) :477-483
[10]   Noninvasive respiratory management of high level spinal cord injury [J].
Bach, John R. .
JOURNAL OF SPINAL CORD MEDICINE, 2012, 35 (02) :72-80