Comparison of Genome-Wide Association Methods in Analyses of Admixed Populations with Complex Familial Relationships

被引:12
|
作者
Kadri, Naveen K. [1 ]
Guldbrandtsen, Bernt [1 ]
Sorensen, Peter [1 ]
Sahana, Goutam [1 ]
机构
[1] Aarhus Univ, Dept Mol Biol & Genet, Ctr Quantitat Genet & Genom, Aarhus, Denmark
来源
PLOS ONE | 2014年 / 9卷 / 03期
关键词
MULTILOCUS GENOTYPE DATA; STRATIFICATION; VARIANTS; TRAITS; MODEL; INFERENCE; LOCI;
D O I
10.1371/journal.pone.0088926
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Population structure is known to cause false-positive detection in association studies. We compared the power, precision, and type-I error rates of various association models in analyses of a simulated dataset with structure at the population (admixture from two populations; P) and family (K) levels. We also compared type-I error rates among models in analyses of publicly available human and dog datasets. The models corrected for none, one, or both structure levels. Correction for K was performed with linear mixed models incorporating familial relationships estimated from pedigrees or genetic markers. Linear models that ignored K were also tested. Correction for P was performed using principal component or structured association analysis. In analyses of simulated and real data, linear mixed models that corrected for K were able to control for type-I error, regardless of whether they also corrected for P. In contrast, correction for P alone in linear models was insufficient. The power and precision of linear mixed models with and without correction for P were similar. Furthermore, power, precision, and type-I error rate were comparable in linear mixed models incorporating pedigree and genomic relationships. In summary, in association studies using samples with both P and K, ancestries estimated using principal components or structured assignment were not sufficient to correct type-I errors. In such cases type-I errors may be controlled by use of linear mixed models with relationships derived from either pedigree or from genetic markers.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Joint genotype- and ancestry-based genome-wide association studies in admixed populations
    Szulc, Piotr
    Bogdan, Malgorzata
    Frommlet, Florian
    Tang, Hua
    GENETIC EPIDEMIOLOGY, 2017, 41 (06) : 555 - 566
  • [2] A Comparison of Multivariate Genome-Wide Association Methods
    Galesloot, Tessel E.
    van Steen, Kristel
    Kiemeney, Lambertus A. L. M.
    Janss, Luc L.
    Vermeulen, Sita H.
    PLOS ONE, 2014, 9 (04):
  • [3] Detecting fitness epistasis in recently admixed populations with genome-wide data
    Ni, Xumin
    Zhou, Mengshi
    Wang, Heming
    He, Karen Y.
    Broeckel, Uli
    Hanis, Craig
    Kardia, Sharon
    Redline, Susan
    Cooper, Richard S.
    Tang, Hua
    Zhu, Xiaofeng
    BMC GENOMICS, 2020, 21 (01)
  • [4] Admixed Populations Improve Power for Variant Discovery and Portability in Genome-Wide Association Studies
    Lin, Meng
    Park, Danny S.
    Zaitlen, Noah A.
    Henn, Brenna M.
    Gignoux, Christopher R.
    FRONTIERS IN GENETICS, 2021, 12
  • [5] Quality Control Procedures for Genome-Wide Association Studies
    Truong, Van Q.
    Woerner, Jakob A.
    Cherlin, Tess A.
    Bradford, Yuki
    Lucas, Anastasia M.
    Okeh, Chelsea C.
    Shivakumar, Manu K.
    Hui, Daniel H.
    Kumar, Rachit
    Pividori, Milton
    Jones, S. Chris
    Bossa, Abigail C.
    Turner, Stephen D.
    Ritchie, Marylyn D.
    Verma, Shefali S.
    CURRENT PROTOCOLS, 2022, 2 (11):
  • [6] Challenges in conducting genome-wide association studies in highly admixed multi-ethnic populations: the Generation R Study
    Medina-Gomez, Carolina
    Felix, Janine Frederique
    Estrada, Karol
    Peters, Marjoline Josephine
    Herrera, Lizbeth
    Kruithof, Claudia Jeanette
    Duijts, Liesbeth
    Hofman, Albert
    van Duijn, Cornelia Marja
    Uitterlinden, Andreas Gerardus
    Jaddoe, Vincent Wilfred Vishal
    Rivadeneira, Fernando
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2015, 30 (04) : 317 - 330
  • [7] A genome-wide association study on African-ancestry populations for asthma
    Mathias, Rasika A.
    Grant, Audrey V.
    Rafaels, Nicholas
    Hand, Tracey
    Gao, Li
    Vergara, Candelaria
    Tsai, Yuhjung J.
    Yang, Mao
    Campbell, Monica
    Foster, Cassandra
    Gao, Peisong
    Togias, A.
    Hansel, Nadia N.
    Diette, Gregory
    Adkinson, N. Franklin
    Liu, Mark C.
    Faruque, Mezbah
    Dunston, Georgia M.
    Watson, Harold R.
    Bracken, Michael B.
    Hoh, Josephine
    Maul, Pissamai
    Maul, Trevor
    Jedlicka, Anne E.
    Murray, Tanda
    Hetmanski, Jacqueline B.
    Ashworth, Roxann
    Ongaco, Chrissie M.
    Hetrick, Kurt N.
    Doheny, Kimberly F.
    Pugh, Elizabeth W.
    Rotimi, Charles N.
    Ford, Jean
    Eng, Celeste
    Burchard, Esteban G.
    Sleiman, Patrick M. A.
    Hakonarson, Hakon
    Forno, Erick
    Raby, Benjamin A.
    Weiss, Scott T.
    Scott, Alan F.
    Kabesch, Michael
    Liang, Liming
    Abecasis, Goncalo
    Moffatt, Miriam F.
    Cookson, William O. C.
    Ruczinski, Ingo
    Beaty, Terri H.
    Barnes, Kathleen C.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2010, 125 (02) : 336 - 346
  • [8] Application of Bayesian genomic prediction methods to genome-wide association analyses
    Wolc, Anna
    Dekkers, Jack C. M.
    GENETICS SELECTION EVOLUTION, 2022, 54 (01)
  • [9] ancGWAS: a post genome-wide association study method for interaction, pathway and ancestry analysis in homogeneous and admixed populations
    Chimusa, Emile R.
    Mbiyavanga, Mamana
    Mazandu, Gaston K.
    Mulder, Nicola J.
    BIOINFORMATICS, 2016, 32 (04) : 549 - 556
  • [10] Genome-wide association study of familial lung cancer
    Byun, Jinyoung
    Schwartz, Ann G.
    Lusk, Christine
    Wenzlaff, Angela S.
    de Andrade, Mariza
    Mandal, Diptasri
    Gaba, Colette
    Yang, Ping
    You, Ming
    Kupert, Elena Y.
    Anderson, Marshall W.
    Han, Younghun
    Li, Yafang
    Qian, David
    Stilp, Adrienne
    Laurie, Cathy
    Nelson, Sarah
    Zheng, Wenying
    Hung, Rayjean J.
    Gaborieau, Valerie
    Mckay, James
    Brennan, Paul
    Caporaso, Neil E.
    Landi, Maria Teresa
    Wu, Xifeng
    McLaughlin, John R.
    Brhane, Yonathan
    Bosse, Yohan
    Pinney, Susan M.
    Bailey-Wilson, Joan E.
    Amos, Christopher I.
    CARCINOGENESIS, 2018, 39 (09) : 1135 - 1140