Conformability to tissues and adequate mechanical strength are clinically useful properties of resorbable biomaterials used in soft tissue repair. Microbially derived cellulose is attractive as a high strength, highly conformable, and biocompatible material for tissue repair, but is not naturally resorbable. Here we show that controlled oxidation of microbial cellulose sheets that have been pre-irradiated with γ-radiation results in a resorbable and fully conformable membrane that can be rapidly rehydrated in aqueous fluids. In vitro studies showed that degradation of the resorbable membranes occurs in two major phases: (1) initial rapid degradation of about 70-80% of the entire sample followed by (2) slower degradation of an additional 5-10% which eventually levels off leaving a small amount of nonresorbable material. In vivo, prototype materials showed marked degradation at all time points, with the most rapid degradation occurring in the first 2-4 weeks. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014, 131, 39995. Copyright © 2013 Wiley Periodicals, Inc.