Application of a Convolutional Neural Network for image classification for the analysis of collisions in High Energy Physics

被引:9
|
作者
Fernandez Madrazo, Celia [1 ]
Heredia, Ignacio [1 ]
Lloret, Lara [1 ]
Marco de Lucas, Jesus [1 ]
机构
[1] Inst Fis Cantabria, IFCA CSIC UC, Santander, Spain
关键词
D O I
10.1051/epjconf/201921406017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The application of deep learning techniques using convolutional neural networks for the classification of particle collisions in High Energy Physics is explored. An intuitive approach to transform physical variables, like momenta of particles and jets, into a single image that captures the relevant information, is proposed. The idea is tested using a well-known deep learning framework on a simulation dataset, including leptonic ttbar events and the corresponding background at 7 TeV from the CMS experiment at LHC, available as Open Data. This initial test shows competitive results when compared to more classical approaches, like those using feedforward neural networks.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Convolutional Neural Network Based Chart Image Classification
    Amara, Jihen
    Kaur, Pawandeep
    Owonibi, Michael
    Bouaziz, Bassem
    25. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2017), 2017, 2701 : 83 - 88
  • [32] Scalable quantum convolutional neural network for image classification
    Sun, Yuchen
    Li, Dongfen
    Xiang, Qiuyu
    Yuan, Yuhang
    Hu, Zhikang
    Hua, Xiaoyu
    Jiang, Yangyang
    Zhu, Yonghao
    Fu, You
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 657
  • [33] Consolidated Convolutional Neural Network for Hyperspectral Image Classification
    Chang, Yang-Lang
    Tan, Tan-Hsu
    Lee, Wei-Hong
    Chang, Lena
    Chen, Ying-Nong
    Fan, Kuo-Chin
    Alkhaleefah, Mohammad
    REMOTE SENSING, 2022, 14 (07)
  • [34] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48
  • [35] In Embedded Systems Image Classification with Convolutional Neural Network
    Calik, Rasim Caner
    Demirci, M. Fatih
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [36] Pneumonia image classification based on convolutional neural network
    Xiong, Feng
    He, Di
    Liu, Yujie
    Qi, Meijie
    Zhang, Zhoufeng
    Liu, Lixin
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057
  • [37] Optimization of Convolutional Neural Network Parameters for Image Classification
    Sinha, Toshi
    Verma, Brijesh
    Haidar, Ali
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [38] Hierarchical bilinear convolutional neural network for image classification
    Zhang, Xiang
    Tang, Lei
    Luo, Hangzai
    Zhong, Sheng
    Guan, Ziyu
    Chen, Long
    Zhao, Chao
    Peng, Jinye
    Fan, Jianping
    IET COMPUTER VISION, 2021, 15 (03) : 197 - 207
  • [39] A Lightweight Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Lin, Zhijie
    Xu, Meng
    Huang, Qiang
    Zhou, Jun
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 4150 - 4163
  • [40] An Improved Convolutional Neural Network Architecture for Image Classification
    Ferreyra-Ramirez, A.
    Aviles-Cruz, C.
    Rodriguez-Martinez, E.
    Villegas-Cortez, J.
    Zuniga-Lopez, A.
    PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 89 - 101