CONVERGENCE OF THE TIME-DOMAIN PERFECTLY MATCHED LAYER METHOD FOR ACOUSTIC SCATTERING PROBLEMS

被引:0
作者
Chen, Zhiming [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math, LSEC, Beijing 100080, Peoples R China
关键词
perfectly matched layer; acoustic scattering; exponential convergence; stability; ABSORBING BOUNDARY-CONDITIONS; NUMERICAL-SOLUTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the stability and convergence of the time-domain perfectly matched layer (PML) method for solving the acoustic scattering problems. We first prove the well-posedness and the stability of the time-dependent acoustic scattering problem with the Dirichlet-to-Neumann boundary condition. Next we show the well-posedness of the unsplit-field PML method for the acoustic scattering problems. Then we prove the exponential convergence of the non-splitting PML method in terms of the thickness and medium property of the artificial PML layer. The proof depends on a stability result of the PML system for constant medium property and an exponential decay estimate of the modified Bessel functions.
引用
收藏
页码:124 / 146
页数:23
相关论文
共 28 条
[1]   A mathematical analysis of the PML method [J].
Abarbanel, S ;
Gottlieb, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 134 (02) :357-363
[2]  
APPELO D, 2006, PERFECTLY MATCHED LA
[3]   On the long-time behavior of unsplit perfectly matched layers [J].
Bécache, E ;
Petropoulos, PG ;
Gedney, SD .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (05) :1335-1342
[4]   On the analysis of Beerenger's perfectly matched layers for Maxwell's equations [J].
Bécache, E ;
Joly, P .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (01) :87-119
[5]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[6]  
Chen S., 2005, INTRO MODERN PARTIAL
[7]   An adaptive perfectly matched layer technique for time-harmonic scattering problems [J].
Chen, ZM ;
Liu, XZ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) :645-671
[8]   An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures [J].
Chen, ZM ;
Wu, HJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) :799-826
[9]   The perfectly matched layer in curvilinear coordinates [J].
Collino, F ;
Monk, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :2061-2090
[10]  
Colton D, 2013, CLASS APPL MATH