Coral-shaped porous LiFePO4/graphene hybrids for high rate and all-climate battery applications

被引:40
作者
Fan, Qi [1 ,2 ]
Zhang, Yuanjian [1 ]
Xu, Qingyu [3 ]
Wang, Jun [4 ]
Lei, Lixu [1 ]
Sun, Yueming [1 ]
Lund, Peter D. [2 ,4 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Aalto Univ, Sch Sci, POB 15100, FI-00076 Espoo, Finland
[3] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China
[4] Southeast Univ, Key Lab Solar Energy Sci & Technol, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion battery; LiFePO4; Graphene; Hierarchical porous structures; All-climate; LITHIUM-ION BATTERIES; HIGH-PERFORMANCE LI; GRAPHENE-OXIDE; ELECTROCHEMICAL PROPERTIES; SHELL STRUCTURE; DIRECT GROWTH; CATHODE; ELECTRODE; CARBON; NANOCOMPOSITE;
D O I
10.1016/j.ensm.2019.06.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tailor-designed cathode materials are essential for Li-ion batteries with both high energy density and outstanding capacity retention. Here we have designed and fabricated coral-shaped hierarchical porous LiFePO4/graphene hybrids for lithium-ion batteries. These novel hybrid materials exhibit excellent electrochemical performance over a wide temperature range from -40 degrees C to +60 degrees C. Even at -40 degrees C, the hybrid cathode can deliver a high initial capacity of 120 mAhg(-1) and still maintain a discharge capacity of 80 mAhg(-1) after 500 cycles with a very low capacity loss of 0.066% per cycle. The excellent wide-temperature performance can be ascribed to the porous structure and fast ion/electronic transport kinetics of the high conductive framework.
引用
收藏
页码:457 / 463
页数:7
相关论文
共 58 条
  • [1] Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials
    Chen, Biao
    Liu, Enzuo
    Cao, Tingting
    He, Fang
    Shi, Chunsheng
    He, Chunnian
    Ma, Liying
    Li, Qunying
    Li, Jiajun
    Zhao, Naiqin
    [J]. NANO ENERGY, 2017, 33 : 247 - 256
  • [2] Chen H., SCI ADV, V3, P7233
  • [3] Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range
    Chen, Renjie
    Qu, Wenjie
    Qian, Ji
    Chen, Nan
    Dai, Yujuan
    Guo, Cui
    Huang, Yongxin
    Li, Li
    Wu, Feng
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (47) : 24677 - 24685
  • [4] The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
    Delacourt, C
    Poizot, P
    Tarascon, JM
    Masquelier, C
    [J]. NATURE MATERIALS, 2005, 4 (03) : 254 - 260
  • [5] Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
    Delmas, C.
    Maccario, M.
    Croguennec, L.
    Le Cras, F.
    Weill, F.
    [J]. NATURE MATERIALS, 2008, 7 (08) : 665 - 671
  • [6] High performance LiFePO4 electrode materials: influence of colloidal particle morphology and porosity on lithium-ion battery power capability
    Doherty, Cara M.
    Caruso, Rachel A.
    Drummond, Calum J.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (06) : 813 - 823
  • [7] Wired porous cathode materials:: A novel concept for synthesis of LiFePO4
    Dominko, Robert
    Bele, Marjan
    Goupil, Jean-Michel
    Gaberscek, Miran
    Hanzel, Darko
    Arcon, Iztok
    Jamnik, Janez
    [J]. CHEMISTRY OF MATERIALS, 2007, 19 (12) : 2960 - 2969
  • [8] Facile synthesis of a 3D-porous LiNbO3 nanocomposite as a novel electrode material for lithium ion batteries
    Fan, Qi
    Lei, Lixu
    Sun, Yueming
    [J]. NANOSCALE, 2014, 6 (13) : 7188 - 7192
  • [9] Direct growth of FePO4/graphene and LiFePO4/graphene hybrids for high rate Li-ion batteries
    Fan, Qi
    Lei, Lixu
    Xu, Xingyu
    Yin, Gui
    Sun, Yueming
    [J]. JOURNAL OF POWER SOURCES, 2014, 257 : 65 - 69
  • [10] Direct growth of FePO4/graphene hybrids for Li-ion and Na-ion storage
    Fan, Qi
    Lei, Lixu
    Yin, Gui
    Chen, Yanfeng
    Sun, Yueming
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2014, 38 : 120 - 123