Sturm-Liouville problems with reducible boundary conditions

被引:8
作者
Binding, Paul A. [1 ]
Browne, Patrick J.
Watson, Bruce A.
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Saskatchewan, Dept Comp Sci, Math Sci Grp, Saskatoon, SK S7N 5E6, Canada
[3] Univ Witwatersrand, Sch Math, ZA-2050 Wits, South Africa
基金
加拿大自然科学与工程研究理事会;
关键词
Sturm-Liouville problem; eigenparameter-dependent boundary conditions; Jordan chain;
D O I
10.1017/S0013091505000131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The regular Sturm-Liouville problem tau y := -y" + qy = lambda y on [0, 1], lambda is an element of C, where q is an element of L-1(0, 1) and P-j and Q(j) are polynomials with real coefficients. A comparison is made between this problem and the corresponding 'reduced' one where all common factors are removed from the boundary conditions. Topics treated include Jordan chain structure, eigenvalue asymptotics and eigenfunction oscillation.
引用
收藏
页码:593 / 608
页数:16
相关论文
共 17 条
[1]  
[Anonymous], P ROYAL SOC EDINBURG
[2]  
Atkinson FV., 1964, DISCRETE CONTINUOUS
[3]  
BENEDEK AI, 1982, REV U MAT AGRENTINA, V30, P167
[4]   Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter [J].
Binding, PA ;
Browne, PJ ;
Watson, BA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 291 (01) :246-261
[5]  
Collatz L., 1963, Eigenvalue Problems with Technical Applications
[6]   APPLICATIONS OF A COMMUTATION FORMULA [J].
DEIFT, PA .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (02) :267-310
[7]  
DIJKSMA A, 1980, P ROY SOC EDINB A, V87, P1
[8]  
ETKIN AE, 1987, AM MATH SOC TRANSL 2, V136, P35
[9]  
FULTON CT, 1980, P ROY SOC EDINB A, V87, P1
[10]   2-POINT BOUNDARY-VALUE PROBLEMS WITH EIGENVALUE PARAMETER CONTAINED IN BOUNDARY-CONDITIONS [J].
FULTON, CT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 77 :293-308