Predicting postoperative liver cancer death outcomes with machine learning

被引:15
作者
Wang, Yong [1 ]
Ji, Chaopeng [2 ,3 ]
Wang, Ying [1 ]
Ji, Muhuo [1 ]
Yang, Jian-Jun [1 ]
Zhou, Cheng-Mao [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Anesthesiol Pain & Perioperat Med, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Dept Rehabil Med, Zhengzhou, Peoples R China
[3] Zhengzhou Univ, Med Coll, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; hepatocellular carcinoma; mortality; postoperative; AUC;
D O I
10.1080/03007995.2021.1885361
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective To investigate the effect of 5 machine learning algorithms in predicting total hepatocellular carcinoma (HCC) postoperative death outcomes. Methods This study was a secondary analysis. A prognosis model was established using machine learning with python. Results The results from the machine learning gbm algorithm showed that the most important factors, ranked from first to fifth, were: preoperative aspartate aminotransferase (GOT), preoperative AFP, preoperative cereal third transaminase (GPT), preoperative total bilirubin, and LC3. Postoperative death model results for liver cancer patients in the test group: of the 5 algorithm models, the highest accuracy rate was that of forest (0.739), followed by the gbm algorithm (0.714); of the 5 algorithms, the AUC values, from high to low, were forest (0.803), GradientBoosting (0.746), gbm (0.724), Logistic (0.660) and DecisionTree (0.578). Conclusion Machine learning can predict total hepatocellular carcinoma postoperative death outcomes.
引用
收藏
页码:629 / 634
页数:6
相关论文
共 50 条
  • [31] Predicting Hearing Aid Outcomes Using Machine Learning
    Roger, Pauline
    Lespargot, Thomas
    Boiteux, Catherine
    Bailly-Masson, Eric
    Auberger, Fabien
    Mouysset, Sandrine
    Fraysse, Bernard
    [J]. AUDIOLOGY AND NEUROTOLOGY, 2025,
  • [32] Predicting outcomes of pelvic exenteration using machine learning
    Dudurych, I.
    Kelly, M. E.
    Aalbers, A. G. J.
    Aziz, N. Abdul
    Abecasis, N.
    Abraham-Nordling, M.
    Akiyoshi, T.
    Alberda, W.
    Albert, M.
    Andric, M.
    Angenete, E.
    Antoniou, A.
    Auer, R.
    Austin, K. K.
    Aziz, O.
    Baker, R. P.
    Bali, M.
    Baseckas, G.
    Bebington, B.
    Bedford, M.
    Bednarski, B. K.
    Beets, G. L.
    Berg, P. L.
    Beynon, J.
    Biondo, S.
    Boyle, K.
    Bordeianou, L.
    Bremers, A. B.
    Brunner, M.
    Buchwald, P.
    Bui, A.
    Burgess, A.
    Burger, J. W. A.
    Burling, D.
    Burns, E.
    Campain, N.
    Carvalhal, S.
    Castro, L.
    Caycedo-Marulanda, A.
    Chan, K. K. L.
    Chang, G. J.
    Chew, M. H.
    Chok, A. K.
    Chong, P.
    Christensen, H. K.
    Clouston, H.
    Codd, M.
    Collins, D.
    Colquhoun, A. J.
    Corr, A.
    [J]. COLORECTAL DISEASE, 2020, 22 (12) : 1933 - 1940
  • [33] The promise of machine learning in predicting treatment outcomes in psychiatry
    Chekroud, Adam M.
    Bondar, Julia
    Delgadillo, Jaime
    Doherty, Gavin
    Wasil, Akash
    Fokkema, Marjolein
    Cohen, Zachary
    Belgrave, Danielle
    DeRubeis, Robert
    Iniesta, Raquel
    Dwyer, Dominic
    Choi, Karmel
    [J]. WORLD PSYCHIATRY, 2021, 20 (02) : 154 - 170
  • [34] Predicting Football Match Outcomes With Machine Learning Approaches
    Choi B.S.
    Foo L.K.
    Chua S.-L.
    [J]. Mendel, 2023, 29 (02) : 229 - 236
  • [35] Exploring a machine learning approach: Predicting death in sexual assault
    Reid, Joan A.
    Beauregard, Eric
    [J]. JOURNAL OF CRIMINAL JUSTICE, 2020, 71
  • [36] Machine learning for predicting colon cancer recurrence
    Kayikcioglu, Erkan
    Onder, Arif Hakan
    Bacak, Burcu
    Serel, Tekin Ahmet
    [J]. SURGICAL ONCOLOGY-OXFORD, 2024, 54
  • [37] Value of a Machine Learning Approach for Predicting Clinical Outcomes in Young Patients With Hypertension
    Wu, Xueyi
    Yuan, Xinglong
    Wang, Wei
    Liu, Kai
    Qin, Ying
    Sun, Xiaolu
    Ma, Wenjun
    Zou, Yubao
    Zhang, Huimin
    Zhou, Xianliang
    Wu, Haiying
    Jiang, Xiongjing
    Cai, Jun
    Chang, Wenbing
    Zhou, Shenghan
    Song, Lei
    [J]. HYPERTENSION, 2020, 75 (05) : 1271 - 1278
  • [38] Predicting suicidal behavior outcomes: an analysis of key factors and machine learning models
    Bazrafshan, Mohammad
    Sayehmiri, Kourosh
    [J]. BMC PSYCHIATRY, 2024, 24 (01)
  • [39] Machine learning for predicting outcomes of transcatheter aortic valve implantation: A systematic review
    Sulaiman, Ruba
    Faisal, Md. Ahasan Atick
    Hasan, Maram
    Chowdhury, Muhammad E. H.
    Bensaali, Faycal
    Alnabti, Abdulrahman
    Yalcin, Huseyin C.
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 197
  • [40] Predicting Postoperative Lung Cancer Recurrence and Survival Using Cox Proportional Hazards Regression and Machine Learning
    Pu, Lucy
    Dhupar, Rajeev
    Meng, Xin
    [J]. CANCERS, 2025, 17 (01)