Predicting postoperative liver cancer death outcomes with machine learning

被引:14
作者
Wang, Yong [1 ]
Ji, Chaopeng [2 ,3 ]
Wang, Ying [1 ]
Ji, Muhuo [1 ]
Yang, Jian-Jun [1 ]
Zhou, Cheng-Mao [1 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Dept Anesthesiol Pain & Perioperat Med, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Affiliated Hosp 1, Dept Rehabil Med, Zhengzhou, Peoples R China
[3] Zhengzhou Univ, Med Coll, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Machine learning; hepatocellular carcinoma; mortality; postoperative; AUC;
D O I
10.1080/03007995.2021.1885361
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective To investigate the effect of 5 machine learning algorithms in predicting total hepatocellular carcinoma (HCC) postoperative death outcomes. Methods This study was a secondary analysis. A prognosis model was established using machine learning with python. Results The results from the machine learning gbm algorithm showed that the most important factors, ranked from first to fifth, were: preoperative aspartate aminotransferase (GOT), preoperative AFP, preoperative cereal third transaminase (GPT), preoperative total bilirubin, and LC3. Postoperative death model results for liver cancer patients in the test group: of the 5 algorithm models, the highest accuracy rate was that of forest (0.739), followed by the gbm algorithm (0.714); of the 5 algorithms, the AUC values, from high to low, were forest (0.803), GradientBoosting (0.746), gbm (0.724), Logistic (0.660) and DecisionTree (0.578). Conclusion Machine learning can predict total hepatocellular carcinoma postoperative death outcomes.
引用
收藏
页码:629 / 634
页数:6
相关论文
共 50 条
[21]   Value of machine learning in predicting TAVI outcomes [J].
R. R. Lopes ;
M. S. van Mourik ;
E. V. Schaft ;
L. A. Ramos ;
J. Baan Jr. ;
J. Vendrik ;
B. A. J. M. de Mol ;
M. M. Vis ;
H. A. Marquering .
Netherlands Heart Journal, 2019, 27 :443-450
[22]   Machine Learning for Predicting Cancer Severity [J].
Qin, Alex ;
Hasan, Md Rakibul ;
Ahmed, Khandaker Asif ;
Hossain, Md Zakir .
2022 IEEE 10TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2022), 2022, :527-529
[23]   Machine learning and the nomogram as the accurate tools for predicting postoperative malnutrition risk in esophageal cancer patients [J].
Lin, Zhenmeng ;
He, Hao ;
Yan, Mingfang ;
Chen, Xiamei ;
Chen, Hanshen ;
Ke, Jianfang .
FRONTIERS IN NUTRITION, 2025, 12
[24]   Predicting postoperative outcomes of liver resection by magnetic resonance elastography [J].
Abe, Hayato ;
Midorikawa, Yutaka ;
Mitsuka, Yusuke ;
Aramaki, Osamu ;
Higaki, Tokio ;
Matsumoto, Naoki ;
Moriyama, Mitsuhiko ;
Haradome, Hiroki ;
Abe, Osamu ;
Sugitani, Masahiko ;
Tsuji, Shingo ;
Takayama, Tadatoshi .
SURGERY, 2017, 162 (02) :248-255
[25]   Machine learning in predicting postoperative complications in Crohn's disease [J].
Zhang, Li-Fan ;
Chen, Liu-Xiang ;
Yang, Wen-Juan ;
Hu, Bing .
WORLD JOURNAL OF GASTROINTESTINAL SURGERY, 2024, 16 (08)
[26]   Predicting post-liver transplant outcomes in patients with acute-on-chronic liver failure using Expert-Augmented Machine Learning [J].
Ge, Jin ;
Digitale, Jean C. ;
Fenton, Cynthia ;
Mcculloch, Charles E. ;
Lai, Jennifer C. ;
Pletcher, Mark J. ;
Gennatas, Efstathios D. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2023, 23 (12) :1908-1921
[27]   Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms [J].
Zhou, Cheng-Mao ;
Wang, Ying ;
Xue, Qiong ;
Yang, Jian-Jun ;
Zhu, Yu .
BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
[28]   Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms [J].
Cheng-Mao Zhou ;
Ying Wang ;
Qiong Xue ;
Jian-Jun Yang ;
Yu Zhu .
BMC Medical Research Methodology, 23
[29]   Application of machine learning techniques for predicting survival in ovarian cancer [J].
Azar, Amir Sorayaie ;
Rikan, Samin Babaei ;
Naemi, Amin ;
Mohasefi, Jamshid Bagherzadeh ;
Pirnejad, Habibollah ;
Mohasefi, Matin Bagherzadeh ;
Wiil, Uffe Kock .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
[30]   Machine learning approaches for the prediction of postoperative complication risk in liver resection patients [J].
Zeng, Siyu ;
Li, Lele ;
Hu, Yanjie ;
Luo, Li ;
Fang, Yuanchen .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)