High-density plasma with internal diffusion barrier in the Large Helical Device

被引:26
作者
Sakamoto, R. [1 ]
Kobayashi, M. [1 ]
Miyazawa, J. [1 ]
Ohdachi, S. [1 ]
Yamada, H. [1 ]
Funaba, H. [1 ]
Goto, M. [1 ]
Masuzaki, S. [1 ]
Morisaki, T. [1 ]
Yamada, I. [1 ]
Narihara, K. [1 ]
Tanaka, K. [1 ]
Morita, S. [1 ]
Ida, K. [1 ]
Sakakibara, S. [1 ]
Narushima, Y. [1 ]
Watanabe, K. Y. [1 ]
Suzuki, Y. [1 ]
Ashikawa, N. [1 ]
Nagayama, Y. [1 ]
Peterson, B. J. [1 ]
Shoji, M. [1 ]
Suzuki, C. [1 ]
Tokitani, M. [1 ]
Yoshimura, S. [1 ]
Ohyabu, N. [1 ]
Komori, A. [1 ]
Motojima, O. [1 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
关键词
ENERGY CONFINEMENT; PERFORMANCE; TOKAMAK; REGIMES; LHD;
D O I
10.1088/0029-5515/49/8/085002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An attractive high-density operational regime which is a so-called internal diffusion barrier (IDB) has been discovered in a helical divertor configuration on the Large Helical Device (LHD). The IDB is characterized by steep density gradients and the plasma profile is divided by the IDB into a high-density core plasma and a low density mantle plasma. The IDB enables the core plasma to access the high-density/high-pressure regime. The attainable central density exceeds 1 x 10(21) m(-3) and the central pressure reaches approximate to 1.5 times atmospheric pressure. Core pellet fuelling is absolutely essential for the IDB formation and it is reproducibly obtained by employing intensive multiple-pellet injection. In the IDB core plasma, the particle diffusion coefficient is kept at a considerably low level, 0.05 m(2) s(-1), in spite of high-density and steep-density gradients whereas an inward particle convection velocity is not observed.
引用
收藏
页数:8
相关论文
共 50 条
[31]   On decoding of rapid motor imagery in a diverse population using a high-density NIRS device [J].
Kothe, Christian ;
Hanada, Grant ;
Mullen, Sean ;
Mullen, Tim .
FRONTIERS IN NEUROERGONOMICS, 2024, 5
[32]   STABILIZATION OF UNSTABLE LOW-TEMPERATURE AND HIGH-DENSITY OPERATION IN THE FORCE-FREE HELICAL REACTOR [J].
Mitarai, Osamu ;
Sagara, Akio ;
Ohyabu, Nobuyoshi ;
Sakamoto, Ryuichi ;
Komori, Akio ;
Motojima, Osamu .
FUSION SCIENCE AND TECHNOLOGY, 2009, 56 (04) :1495-1511
[33]   Direct measurement of refracted trajectory of transmitting electron cyclotron beam through plasma on the Large Helical Device [J].
Takahashi, Hiromi ;
Kubo, Shin ;
Shimozuma, Takashi ;
Igami, Hiroe ;
Yoshimura, Yasuo ;
Ito, Satoshi ;
Kobayasi, Sakuji ;
Mizuno, Yoshinori ;
Okada, Kohta ;
Kamio, Shuji ;
Mutoh, Takashi ;
Osakabe, Masaki ;
Nagasaki, Kazunobu ;
Marushchenko, Nikolai B. ;
Turkin, Yuriy .
EC18 - 18TH JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON CYCLOTRON RESONANCE HEATING, 2015, 87
[34]   Divertor plasma and neutral particles behavior under the local island divertor configuration in the Large Helical Device [J].
Masuzaki, S. ;
Morisaki, T. ;
Kobayashi, M. ;
Shoji, M. ;
Ohyabu, N. ;
Komori, A. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) :314-318
[35]   Sorption and diffusion of per-polyfluoroalkyl substances (PFAS) in high-density polyethylene geomembranes [J].
Ahmad, Aamir ;
Tian, Kuo ;
Tanyu, Burak ;
Foster, Gregory D. .
WASTE MANAGEMENT, 2024, 174 :15-23
[36]   Gyrokinetic microinstability analysis of high-Ti and high-Te isotope plasmas in Large Helical Device [J].
Nakata, Motoki ;
Nagaoka, Kenichi ;
Tanaka, Kenji ;
Takahashi, Hiromi ;
Nunami, Masanori ;
Satake, Shinsuke ;
Yokoyama, Masayuki ;
Warmer, Felix .
PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (01)
[37]   Impact of carbon impurities on the confinement of high-ion-temperature discharges in the Large Helical Device [J].
Osakabe, M. ;
Takahashi, H. ;
Nagaoka, K. ;
Murakami, S. ;
Yamada, I. ;
Yoshinuma, M. ;
Ida, K. ;
Yokoyama, M. ;
Seki, R. ;
Lee, H. ;
Nakamura, Y. ;
Tamura, N. ;
Sudo, S. ;
Tanaka, K. ;
Seki, T. ;
Takeiri, Y. ;
Kaneko, O. ;
Yamada, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (09)
[38]   High speed vacuum ultraviolet telescope system for edge fluctuation measurement in the large helical device [J].
Ming, T. F. ;
Ohdachi, S. ;
Sakakibara, S. ;
Suzuki, Y. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)
[39]   High-energy neutral particle measurements simulating a particle diagnostics in Large Helical Device [J].
Ozaki, T. ;
Goncharov, P. ;
Veschev, E. ;
Sudo, S. ;
Seki, T. ;
Tamura, N. .
FUSION ENGINEERING AND DESIGN, 2007, 82 (5-14) :1251-1257
[40]   High-power and Steady-state Operation of ICRF Heating in the Large Helical Device [J].
Mutoh, T. ;
Seki, T. ;
Saito, K. ;
Kasahara, H. ;
Seki, R. ;
Kamio, S. ;
Kumazawa, R. ;
Kubo, S. ;
Shimozuma, T. ;
Yoshimura, Y. ;
Igami, H. ;
Takahashi, H. ;
Ii, T. ;
Makino, R. ;
Nagaoka, K. ;
Nomura, G. ;
Shinya, T. .
RADIOFREQUENCY POWER IN PLASMAS, 2015, 1689