High-density plasma with internal diffusion barrier in the Large Helical Device

被引:26
作者
Sakamoto, R. [1 ]
Kobayashi, M. [1 ]
Miyazawa, J. [1 ]
Ohdachi, S. [1 ]
Yamada, H. [1 ]
Funaba, H. [1 ]
Goto, M. [1 ]
Masuzaki, S. [1 ]
Morisaki, T. [1 ]
Yamada, I. [1 ]
Narihara, K. [1 ]
Tanaka, K. [1 ]
Morita, S. [1 ]
Ida, K. [1 ]
Sakakibara, S. [1 ]
Narushima, Y. [1 ]
Watanabe, K. Y. [1 ]
Suzuki, Y. [1 ]
Ashikawa, N. [1 ]
Nagayama, Y. [1 ]
Peterson, B. J. [1 ]
Shoji, M. [1 ]
Suzuki, C. [1 ]
Tokitani, M. [1 ]
Yoshimura, S. [1 ]
Ohyabu, N. [1 ]
Komori, A. [1 ]
Motojima, O. [1 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
关键词
ENERGY CONFINEMENT; PERFORMANCE; TOKAMAK; REGIMES; LHD;
D O I
10.1088/0029-5515/49/8/085002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An attractive high-density operational regime which is a so-called internal diffusion barrier (IDB) has been discovered in a helical divertor configuration on the Large Helical Device (LHD). The IDB is characterized by steep density gradients and the plasma profile is divided by the IDB into a high-density core plasma and a low density mantle plasma. The IDB enables the core plasma to access the high-density/high-pressure regime. The attainable central density exceeds 1 x 10(21) m(-3) and the central pressure reaches approximate to 1.5 times atmospheric pressure. Core pellet fuelling is absolutely essential for the IDB formation and it is reproducibly obtained by employing intensive multiple-pellet injection. In the IDB core plasma, the particle diffusion coefficient is kept at a considerably low level, 0.05 m(2) s(-1), in spite of high-density and steep-density gradients whereas an inward particle convection velocity is not observed.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Gamma ray diagnostics for high time resolution measurement in large helical device [J].
Ogawa, K. ;
Sangaroon, S. ;
Liao, L. Y. ;
Matsuura, H. ;
Kimura, K. ;
Umezaki, D. ;
Naoi, M. ;
Fukuda, T. ;
Wakisaka, S. ;
Isobe, M. .
JOURNAL OF INSTRUMENTATION, 2023, 18 (09)
[22]   Effect of the RF wall conditioning on the high performance plasmas in the Large Helical Device [J].
Takahashi, H. ;
Osakabe, M. ;
Nagaoka, K. ;
Nakano, H. ;
Tokitani, M. ;
Fujii, K. ;
Murakami, S. ;
Takeiri, Y. ;
Seki, T. ;
Saito, K. ;
Kasahara, H. ;
Seki, R. ;
Kamio, S. ;
Masuzaki, S. ;
Mutoh, T. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :1100-1103
[23]   Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device [J].
Creely, A. J. ;
Ida, K. ;
Yoshinuma, M. ;
Tokuzawa, T. ;
Tsujimura, T. ;
Akiyama, T. ;
Sakamoto, R. ;
Emoto, M. ;
Tanaka, K. ;
Michael, C. A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (07)
[24]   The internal disruption as hard Magnetohydrodynamic limit of 1/2 sawtooth like activity in large helical device [J].
Varela, J. ;
Watanabe, K. Y. ;
Ohdachi, S. .
PHYSICS OF PLASMAS, 2012, 19 (08)
[25]   Study of ion cyclotron range of frequencies heating characteristics in deuterium plasma in the Large Helical Device [J].
Kamio, S. ;
Saito, K. ;
Seki, R. ;
Kasahara, H. ;
Kanda, M. ;
Nomura, G. ;
Seki, T. .
NUCLEAR FUSION, 2022, 62 (01)
[26]   Prediction of Radiative Collapse in the Large Helical Device Plasma Discharges using Convolutional Neural Networks [J].
Suzuki, Yuya ;
Shoji, Mamoru ;
Kenmochi, Naoki ;
Yokoyama, Masayuki .
Plasma and Fusion Research, 2025, 20 :1402021-1
[27]   Intermittent transport in edge plasma with a 3-D magnetic geometry in the Large Helical Device [J].
Tanaka, H. ;
Masuzaki, S. ;
Ohno, N. ;
Morisaki, T. ;
Tsuji, Y. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S563-S566
[28]   Prediction of Radiative Collapse in the Large Helical Device Plasma Discharges using Convolutional Neural Networks [J].
Suzuki, Yuya ;
Shoji, Mamoru ;
Kenmochi, Naoki ;
Yokoyama, Masayuki .
PLASMA AND FUSION RESEARCH, 2025, 20
[29]   Construction of neoclassical transport database for large helical device plasma applying neural network method [J].
Wakasa, Arimitsu ;
Murakami, Sadayoshi ;
Itagaki, Masafumi ;
Oikawa, Shun-ichi .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (3A) :1157-1167
[30]   Multifrequency channel microwave reflectometer with frequency hopping operation for density fluctuation measurements in Large Helical Device [J].
Tokuzawa, T. ;
Ejiri, A. ;
Kawahata, K. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (10)