Commissioning and initial operation of KSTAR superconducting tokamak

被引:64
作者
Oh, Yeong-Kook [1 ]
Kim, W. C. [1 ]
Park, K. R. [1 ]
Park, M. K. [1 ]
Yang, H. L. [1 ]
Kim, Y. S. [1 ]
Chu, Y. [1 ]
Kim, Y. O. [1 ]
Bak, J. G. [1 ]
Baang, E. N. [1 ]
Yoon, S. W. [1 ]
Hahn, S. H. [1 ]
Lee, H. J. [1 ]
Park, S. H. [1 ]
Kim, K. H. [1 ]
Hong, J. [1 ]
Baek, S. H. [1 ]
Kim, M. K. [1 ]
Lee, T. G. [1 ]
Lee, S. I. [1 ]
Bae, Y. S. [1 ]
Yonekawa, H. [1 ]
Choi, J. H. [1 ]
Hwang, I. S. [1 ]
Kim, Y. J. [1 ]
Cho, K. W. [1 ]
Park, Y. M. [1 ]
Kim, J. Y. [1 ]
Lee, J. H. [1 ]
Bak, J. S. [1 ]
Kwon, M. [1 ]
Lee, G. S. [1 ]
Kwak, J. G. [2 ]
Ahn, H. S. [3 ]
Walker, M. L. [4 ]
Humphreys, D. A. [4 ]
Leuer, J. A. [4 ]
Hyatt, A. [4 ]
Jackson, G. [4 ]
Mueller, D. [5 ]
Ivanov, D. P. [6 ]
机构
[1] NFRI, Taejon, South Korea
[2] KAERI, Taejon, South Korea
[3] POSCON Cooperat, Kyungbuk, South Korea
[4] Gen Atom Co, San Diego, CA USA
[5] PPPL, Princeton, NJ USA
[6] RRCKI, NFI, Moscow, Russia
关键词
KSTAR; Commissioning; Cool-down; Superconducting magnet; Initial operation; First plasma; Preionization; CONSTRUCTION; SYSTEM; DESIGN;
D O I
10.1016/j.fusengdes.2008.12.099
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The commissioning and the initial operation for the first plasma in the KSTAR device have been accomplished successfully without any severe failure preventing the device operation and plasma experiments. The commissioning is classified into four steps: Vacuum commissioning, cryogenic cool-down commissioning. magnet system commissioning, and plasma discharge. Vacuum commissioning commenced after completion of the tokamak and basic ancillary systems construction. Base pressure of the vacuum vessel was about 3 x 10(-6) Pa and that of the cryostat about 2.7 x 10(-4) Pa. and both levels meet the KSTAR requirements to start the cool-down operation. All the SC magnets were cooled down by a 9 kW rated cryogenic helium facility and reached the base temperature of 4.5 K in a month. The performance test of the superconducting magnet showed that the joint resistances were below 3 n Omega and the resistance to ground after cool-down was over 1 G Omega. An ac loss test of each PF coil made by applying a dc biased sinusoidal current showed that the coupling loss was within the KSTAR requirement with the coupling loss time constant less than 35 ms for both Nb3Sn and NbTi magnets. All the Superconducting magnets operated in stable without quench for long-time dc operation and with synchronized pulse operation by the plasma control system (PCS). By using an 84 GHz ECH system, second harmonic ECH assisted plasma discharges were produced Successfully with loop voltage of less than 3 V. By the real-time feedback control, operation of 100 kA plasma current with pulse length Lip to 865 ms was achieved, which also meet the first plasma target of 100 kA and 100 ins. The KSTAR device will be operated to meet the missions of steady-state and high-beta achievement by system upgrades and collaborative researches. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:344 / 350
页数:7
相关论文
共 15 条
  • [1] Status of KSTAR electron cyclotron heating system
    Bae, Y. S.
    Na, Y. S.
    Oh, Y. K.
    Kwon, M.
    Bak, J. S.
    Lee, G. S.
    Jeong, J. H.
    Park, S. I.
    Cho, M. H.
    Namkung, W.
    Ellis, R. A.
    Park, H.
    Sakamoto, K.
    Takahashi, K.
    Yamamoto, T.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2007, 52 (02) : 321 - 333
  • [2] Status of the KSTAR tokamak construction
    Bak, J. S.
    Yang, H. L.
    Oh, Y. K.
    Park, Y. M.
    Park, K. R.
    Choi, C. H.
    Kim, W. C.
    Sa, J. W.
    Kim, H. K.
    Lee, G. S.
    [J]. FUSION ENGINEERING AND DESIGN, 2006, 81 (20-22) : 2315 - 2324
  • [3] CHU Y, 2009, IEEE T APPL SU UNPUB
  • [4] Chung W, 2006, J KOREAN PHYS SOC, V49, pS228
  • [5] Status of the KSTAR superconducting magnet system development
    Kim, K
    Park, HK
    Park, KR
    Lim, BS
    Lee, SI
    Chu, Y
    Chung, WH
    Oh, YK
    Baek, SH
    Lee, SJ
    Yonekawa, H
    Kim, JS
    Kim, CS
    Choi, JY
    Chang, YB
    Park, SH
    Kim, DJ
    Song, NH
    Kim, KP
    Song, YJ
    Woo, IS
    Han, WS
    Lee, SH
    Lee, DK
    Lee, KS
    Park, WW
    Joo, JJ
    Park, HT
    An, SJ
    Park, JS
    Lee, GS
    [J]. NUCLEAR FUSION, 2005, 45 (08) : 783 - 789
  • [6] Kim YO, 2006, J KOREAN PHYS SOC, V49, pS236
  • [7] KIM YS, 2009, IEEE T APPL SU UNPUB
  • [8] Design and construction of the KSTAR tokamak
    Lee, GS
    Kwon, M
    Doh, CJ
    Hong, BG
    Kim, K
    Cho, MH
    Namkung, W
    Chang, CS
    Kim, YC
    Kim, JY
    Jhang, HG
    Lee, DK
    You, KI
    Han, JH
    Kyum, MC
    Choi, JW
    Hong, J
    Kim, WC
    Kim, BC
    Choi, JH
    Seo, SH
    Na, HK
    Lee, HG
    Lee, SG
    Yoo, SJ
    Lee, BJ
    Jung, YS
    Bak, JG
    Yang, HL
    Cho, SY
    Im, KH
    Hur, NI
    Yoo, IK
    Sa, JW
    Hong, KH
    Kim, GH
    Yoo, BJ
    Ri, HC
    Oh, YK
    Kim, YS
    Choi, CH
    Kim, DL
    Park, YM
    Cho, KW
    Ha, TH
    Hwang, SM
    Kim, YJ
    Baang, S
    Lee, SI
    Chang, HY
    [J]. NUCLEAR FUSION, 2001, 41 (10) : 1515 - 1523
  • [9] AC loss characteristics of the KSTAR CSMC estimated by pulse test
    Lee, S.
    Chu, Y.
    Chung, W. H.
    Lee, S. J.
    Choi, S. M.
    Park, S. H.
    Yonekawa, H.
    Baek, S. H.
    Kim, J. S.
    Cho, K. W.
    Park, K. R.
    Lim, B. S.
    Oh, Y. K.
    Kim, K.
    Bak, J. S.
    Lee, G. S.
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2006, 16 (02) : 771 - 774
  • [10] Completion of the KSTAR construction and its role as ITER pilot device
    Oh, Yeong-Kook
    Yang, H. L.
    Kim, Y. S.
    Park, K. R.
    Kim, W. C.
    Park, M. K.
    Park, Y. M.
    Cho, K. W.
    Choi, J. W.
    Kim, J. Y.
    Na, H. K.
    Bae, Y. S.
    Bak, J. S.
    Kwon, M.
    Lee, G. S.
    [J]. FUSION ENGINEERING AND DESIGN, 2008, 83 (7-9) : 804 - 809