Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels

被引:103
|
作者
Hu, Shenyang [1 ]
Henager, Charles H., Jr. [1 ]
Heinisch, Howard L. [1 ]
Stan, Marius [2 ]
Baskes, Michael I. [2 ]
Valone, Steven M. [2 ]
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
关键词
IRRADIATED UO2 FUEL; HELIUM BUBBLES; MICROSTRUCTURAL EVOLUTION; HIGH-TEMPERATURE; METALS; GROWTH; PERFORMANCE; SIMULATION; CRYSTALS; KINETICS;
D O I
10.1016/j.jnucmat.2009.03.017
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A phase-field model was developed to simulate the accumulation and transport of fission products and the evolution of gas bubble microstructures in nuclear fuels. The model takes into account the generation of gas atoms and vacancies, and the elastic interaction between diffusive species and defects as well as the inhomogeneity of elasticity and diffusivity. The simulations show that gas bubble nucleation is much easier at grain boundaries than inside grains due to the trapping of gas atoms and the high mobility of vacancies and gas atoms in grain boundaries. Helium bubble formation at unstable vacancy clusters generated by irradiation depends on the mobilities of the vacancies and He, and the continuing supply of vacancies and He. The formation volume of the vacancy and He has a strong effect on the gas bubble nucleation at dislocations. The effective thermal conductivity strongly depends on the bubble volume fraction, but weakly on the morphology of the bubbles. Published by Elsevier B.V.
引用
收藏
页码:292 / 300
页数:9
相关论文
共 50 条
  • [31] Estimation of effective thermal conductivity in U-10Mo fuels with distributed xenon gas bubbles
    Iasir, A. Rafi M.
    Peters, Nickie J.
    Hammond, Karl D.
    JOURNAL OF NUCLEAR MATERIALS, 2018, 508 : 159 - 167
  • [32] Phase-field microstructure-based effective thermal conductivity calculations in tungsten
    Li, Bingchen
    Jin, Shuo
    Xue, Bowen
    Liang, Linyun
    Lu, Guang-Hong
    NUCLEAR FUSION, 2022, 62 (07)
  • [33] Weak solutions to a phase-field model with non-constant thermal conductivity
    Laurencot, P
    QUARTERLY OF APPLIED MATHEMATICS, 1997, 55 (04) : 739 - 760
  • [34] Microstructural evolution of gas bubbles and thermal conductivity in UO2-BeO bicrystal
    Liang, Chuanxin
    Su, Yunting
    Hao, Mengyuan
    Dong, Tianjiao
    Gong, Hengfeng
    Liu, Wenbo
    Wang, Dong
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (29) : 11944 - 11956
  • [35] Microstructural evolution of gas bubbles and thermal conductivity in UO2-BeO bicrystal
    Chuanxin Liang
    Yunting Su
    Mengyuan Hao
    Tianjiao Dong
    Hengfeng Gong
    Wenbo Liu
    Dong Wang
    Journal of Materials Science, 2023, 58 : 11944 - 11956
  • [36] Phase-field modeling of void evolution and swelling in materials under irradiation
    Li YuLan
    Hu ShenYang
    Sun Xin
    Gao Fei
    Henager, Charles H., Jr.
    Khaleel, Mohammad
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (05) : 856 - 865
  • [37] Finite strain phase-field microelasticity theory for modeling microstructural evolution
    Zhao, Pengyang
    Low, Thaddeus Song En
    Wang, Yunzhi
    Niezgoda, Stephen R.
    ACTA MATERIALIA, 2020, 191 : 253 - 269
  • [38] Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges
    Tourret, Damien
    Liu, Hong
    LLorca, Javier
    PROGRESS IN MATERIALS SCIENCE, 2022, 123
  • [39] Phase-field modeling of void evolution and swelling in materials under irradiation
    YuLan Li
    ShenYang Hu
    Xin Sun
    Fei Gao
    Charles H. Henager
    Mohammad Khaleel
    Science China Physics, Mechanics and Astronomy, 2011, 54 : 856 - 865
  • [40] Phase-field modeling of void evolution and swelling in materials under irradiation
    HENAGER Charles H Jr
    KHALEEL Mohammad
    Science China(Physics,Mechanics & Astronomy), 2011, (05) : 856 - 865