A fairly strong stability result for parabolic quasiminimizers

被引:3
作者
Fujishima, Yohei [1 ]
Habermann, Jens [2 ]
Masson, Mathias [3 ]
机构
[1] Shizuoka Univ, Fac Engn, Johoku 3-5-1, Hamamatsu, Shizuoka 4328561, Japan
[2] Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[3] Aalto Univ, Dept Math, POB 11100, FI-00076 Aalto, Finland
关键词
parabolic equations; parabolic quasiminimizers; regularity; stability; DEGENERATE; EQUATIONS;
D O I
10.1002/mana.201700018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider parabolic Q-quasiminimizers related to the p-Laplace equation in Omega(T) : = Omega x (0, T). In particular, we focus on the stability problem with respect to the parameters p and Q. It is known that, if Q -> 1, then parabolic quasiminimizers with fixed initial-boundary data on Omega(T) converge to the parabolic minimizer strongly in L-p(0, T; W-1,W-p(Omega)) under suitable further structural assumptions. Our concern is whether or not we can obtain even stronger convergence. We will show a fairly strong stability result.
引用
收藏
页码:1269 / 1282
页数:14
相关论文
共 10 条
  • [1] [Anonymous], J PARTIAL DIFFERENTI
  • [2] [Anonymous], 1994, J PARTIAL DIFFERENTI
  • [3] DiBenedetto E., 1993, DENEGENERATE PARABOL
  • [4] Global higher integrability for non-quadratic parabolic quasi-minimizers on metric measure spaces
    Fujishima, Yohei
    Habermann, Jens
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (03) : 267 - 301
  • [5] Stability for Parabolic Quasiminimizers
    Fujishima, Yohei
    Habermann, Jens
    Kinnunen, Juha
    Masson, Mathias
    [J]. POTENTIAL ANALYSIS, 2014, 41 (03) : 983 - 1004
  • [6] Global gradient estimates for non-quadratic vector-valued parabolic quasi-minimizers
    Habermann, J.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 114 : 42 - 73
  • [7] Juutinen P, 2009, ADV DIFFERENTIAL EQU, V14, P663
  • [8] Stability for degenerate parabolic equations
    Kinnunen, Juha
    Parviainen, Mikko
    [J]. ADVANCES IN CALCULUS OF VARIATIONS, 2010, 3 (01) : 29 - 48
  • [9] Local higher integrability for parabolic quasiminimizers in metric spaces
    Masson M.
    Miranda Jr. M.
    Paronetto F.
    Parviainen M.
    [J]. Ricerche di Matematica, 2013, 62 (2) : 279 - 305
  • [10] PARABOLIC Q-MINIMA AND MINIMAL SOLUTIONS TO VARIATIONAL FLOW
    WIESER, W
    [J]. MANUSCRIPTA MATHEMATICA, 1987, 59 (01) : 63 - 107