WHEN DOES A SCHRODINGER HEAT EQUATION PERMIT POSITIVE SOLUTIONS
被引:4
|
作者:
Zhang, Qi S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USAUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Zhang, Qi S.
[1
]
机构:
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
来源:
BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS
|
2011年
关键词:
HARNACK INEQUALITY;
D O I:
10.1142/9789814327862_0003
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We introduce some new classes of time dependent functions whose defining properties take into account of oscillations around singularities. We study properties of solutions to the heat equation with coefficients in these classes which are much more singular than those allowed under the current theory. In the case of L-2 potentials and L-2 solutions, we give a characterization of potentials which allow the Schrodinger heat equation to have a positive solution. This provides a new result on the long running problem of identifying potentials permitting a positive solution to the Schrodinger equation. We also establish a nearly necessary and sufficient condition on certain sign changing potentials such that the corresponding heat kernel has Gaussian upper and lower bound. An application to Navier Stokes equation is also given. Keywords: Schrodinger equation, positive solution. AMS No: 35K05.
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia
Dipierro, Serena
Su, Xifeng
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, 19 XinJieKouWai St, Beijing 100875, Peoples R ChinaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia
Su, Xifeng
Valdinoci, Enrico
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia
Valdinoci, Enrico
Zhang, Jiwen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, 19 XinJieKouWai St, Beijing 100875, Peoples R ChinaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley, WA 6009, Australia
机构:
Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
机构:
Univ Missouri, Dept Math, Columbia, MO 65211 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA
Jaye, B. J.
Maz'ya, V. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
Linkoping Univ, Dept Math, SE-58183 Linkoping, SwedenUniv Missouri, Dept Math, Columbia, MO 65211 USA
Maz'ya, V. G.
Verbitsky, I. E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Math, Columbia, MO 65211 USAUniv Missouri, Dept Math, Columbia, MO 65211 USA
Verbitsky, I. E.
JOURNAL D ANALYSE MATHEMATIQUE,
2012,
118
: 577
-
621