Mass Detection on Automated Breast Ultrasound Volume Scans Using Convolutional Neural Network

被引:0
|
作者
Muramatsu, Chisako [1 ]
Hiramatsu, Yuya [1 ]
Fujita, Hiroshi [1 ]
Kobayashi, Hironobu [2 ]
机构
[1] Gifu Univ, Dept Elect Elect & Comp Engn, Gifu, Japan
[2] Nagoya Cent Hosp, Dept Breast & Endocrine Surg, Nagoya, Aichi, Japan
来源
2018 INTERNATIONAL WORKSHOP ON ADVANCED IMAGE TECHNOLOGY (IWAIT) | 2018年
基金
日本学术振兴会;
关键词
breast masses; automated ultrasound volume scans; detection; convolutional neural network;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automated ultrasound volume scan is useful for screening breast cancer as it records the whole breast data allowing longitudinal comparisons and double reading. Unlike examinations with handheld probes, it is less operator independent. However, the number of acquired images is large, which increases radiologists' workload. In this study, we propose a mass detection method on ultrasound volume scans using convolutional neural network (CNN). Using CNN, detection performance greatly improved compared with the conventional filter based method.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Automated Pavement Distress Detection Based on Convolutional Neural Network
    Zhang, Jinhe
    Sun, Shangyu
    Song, Weidong
    Li, Yuxuan
    Teng, Qiaoshuang
    IEEE ACCESS, 2024, 12 : 105055 - 105068
  • [22] Automated detection of ulcers and erosions in capsule endoscopy images using a convolutional neural network
    Afonso, Joao
    Saraiva, Miguel Mascarenhas
    Ferreira, J. P. S.
    Cardoso, Helder
    Ribeiro, Tiago
    Andrade, Patricia
    Parente, Marco
    Jorge, Renato N.
    Macedo, Guilherme
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (03) : 719 - 725
  • [23] Automated detection of ulcers and erosions in capsule endoscopy images using a convolutional neural network
    João Afonso
    Miguel Mascarenhas Saraiva
    J. P. S. Ferreira
    Hélder Cardoso
    Tiago Ribeiro
    Patrícia Andrade
    Marco Parente
    Renato N. Jorge
    Guilherme Macedo
    Medical & Biological Engineering & Computing, 2022, 60 : 719 - 725
  • [24] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Chhabra, Megha
    Ravulakollu, Kiran Kumar
    Kumar, Manoj
    Sharma, Abhay
    Nayyar, Anand
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (09): : 6471 - 6497
  • [25] Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 : 270 - 278
  • [26] Improving automated latent fingerprint detection and segmentation using deep convolutional neural network
    Megha Chhabra
    Kiran Kumar Ravulakollu
    Manoj Kumar
    Abhay Sharma
    Anand Nayyar
    Neural Computing and Applications, 2023, 35 : 6471 - 6497
  • [27] Deep convolutional neural network for the automated detection of Subthalamic nucleus using MER signals
    Hosny, Mohamed
    Zhu, Minwei
    Gao, Wenpeng
    Fu, Yili
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 356
  • [28] Deep Convolutional Neural Network for Automated Detection of Mind Wandering using EEG Signals
    Hosseini, Seyedroohollah
    Guo, Xuan
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 314 - 319
  • [29] AUTOMATED ANATOMICAL LANDMARK DETECTION ON DISTAL FEMUR SURFACE USING CONVOLUTIONAL NEURAL NETWORK
    Yang, Dong
    Zhang, Shaoting
    Yan, Zhennan
    Tan, Chaowei
    Li, Kang
    Metaxas, Dimitris
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 17 - 21
  • [30] Automated thyroid nodule detection from ultrasound imaging using deep convolutional neural networks
    Abdolali, Fatemeh
    Kapur, Jeevesh
    Jaremko, Jacob L.
    Noga, Michelle
    Hareendranathan, Abhilash R.
    Punithakumar, Kumaradevan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 122