Post-synthetic Modification of Covalent Organic Frameworks through in situ Polymerization of Aniline for Enhanced Capacitive Energy Storage

被引:42
作者
Dutta, Tapas Kumar [1 ]
Patra, Abhijit [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Chem, Bhopal Bypass Rd, Bhopal 462066, Madhya Pradesh, India
关键词
Triazine frameworks; Covalent organic framework nanocomposites; Polyaniline; Energy storage; Asymmetric supercapacitor; HIGH-PERFORMANCE; POWER-DENSITY; CARBON; COMPOSITES; ELECTRODE; CO2; NANOSHEETS; NETWORKS; SURFACE; HYBRID;
D O I
10.1002/asia.202001216
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Covalent organic frameworks (COFs) having layered architecture with open nanochannels and high specific surface area are promising candidates for energy storage. However, the low electrical conductivity of two-dimensional COFs often limits their scope in energy storage applications. The conductivity of COFs can be enhanced through post-synthetic modification with conducting polymers. Herein, we developed polyaniline (PANI) modified triazine-based COFs via in situ polymerization of aniline within the porous frameworks. The composite materials showed high conductivity of 1.4-1.9x10(-2) S cm(-1) at room temperature with a 20-fold enhancement of the specific capacitance than the pristine frameworks. The fabricated supercapacitor exhibited a high energy density of 24.4 W h kg(-1) and a power density of 200 W kg(-1) at 0.5 A g(-1) current density. Moreover, the device fabricated using the conducting polymer-triazine COF composite could light up a green light-emitting diode for 1 min after being charged for 10 s.
引用
收藏
页码:158 / 164
页数:7
相关论文
共 74 条
[1]   Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer [J].
Alsbaiee, Alaaeddin ;
Smith, Brian J. ;
Xiao, Leilei ;
Ling, Yuhan ;
Helbling, Damian E. ;
Dichtel, William R. .
NATURE, 2016, 529 (7585) :190-U146
[2]   Redox-active, pyrene-based pristine porous organic polymers for efficient energy storage with exceptional cyclic stability [J].
Bandyopadhyay, Sujoy ;
Singh, Chanderpratap ;
Jash, Priyajit ;
Hussain, Md Waseem ;
Paul, Amit ;
Patra, Abhijit .
CHEMICAL COMMUNICATIONS, 2018, 54 (50) :6796-6799
[3]   Multifunctional Porous Organic Polymers: Tuning of Porosity, CO2, and H2 Storage and Visible-Light-Driven Photocatalysis [J].
Bandyopadhyay, Sujoy ;
Anil, Amith G. ;
James, Anto ;
Patra, Abhijit .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (41) :27669-27678
[4]   Advances in Porous Organic Polymers for Efficient Water Capture [J].
Byun, Yearin ;
Je, Sang Hyun ;
Talapaneni, Siddulu Naidu ;
Coskun, Ali .
CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (44) :10262-10283
[5]   Trends and challenges for microporous polymers [J].
Chaoui, Nicolas ;
Trunk, Matthias ;
Dawson, Robert ;
Schmidt, Johannes ;
Thomas, Arne .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3302-3321
[6]   Covalent Organic Frameworks for Next-Generation Batteries [J].
Chen, Xiudong ;
Sun, Weiwei ;
Wang, Yong .
CHEMELECTROCHEM, 2020, 7 (19) :3905-3926
[7]   High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks [J].
Chen, Xiudong ;
Li, Yusen ;
Wang, Liang ;
Xu, Yi ;
Nie, Anmin ;
Li, Qianqion ;
Wu, Fan ;
Sun, Weiwei ;
Zhang, Xiang ;
Vajtai, Robert ;
Ajayan, Pulickel M. ;
Chen, Long ;
Wang, Yong .
ADVANCED MATERIALS, 2019, 31 (29)
[8]   Effect of pore size and surface area of carbide derived carbons on specific capacitance [J].
Chmiola, J. ;
Yushin, G. ;
Dash, R. ;
Gogotsi, Y. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :765-772
[9]   Rationally synthesized two-dimensional polymers [J].
Colson, John W. ;
Dichtel, William R. .
NATURE CHEMISTRY, 2013, 5 (06) :453-465
[10]   Enhancement of Energy Storage and Photoresponse Properties of Folic-Acid Polyaniline Hybrid Hydrogel by in Situ Growth of Ag Nanoparticles [J].
Das, Sujoy ;
Chakraborty, Priyadarshi ;
Mondal, Sanjoy ;
Shit, Arnab ;
Nandi, Arun K. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (41) :28055-28067