Kumaraswamy distribution: different methods of estimation

被引:53
作者
Dey, Sanku [1 ]
Mazucheli, Josmar [2 ]
Nadarajah, Saralees [3 ]
机构
[1] St Anthonys Coll, Shillong 793001, Meghalaya, India
[2] Univ Estadual Maringa, Maringa, Parana, Brazil
[3] Univ Manchester, Manchester M13 9PL, Lancs, England
关键词
Kumaraswamy distribution; Least squares estimators; Maximum likelihood estimators; Method of maximum product spacing; Method of moments estimators; Percentile estimators; Weighted least squares estimators; GENERALIZED EXPONENTIAL-DISTRIBUTION; BAYESIAN-ESTIMATION;
D O I
10.1007/s40314-017-0441-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses different methods of estimation of the unknown parameters of a two-parameter Kumaraswamy distribution from a frequentist point of view. We briefly describe ten different frequentist approaches, namely, maximum likelihood estimators, moments estimators, L-moments estimators, percentile based estimators, least squares estimators, weighted least squares estimators, maximum product of spacings estimators, Cramer-von-Mises estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators. Monte Carlo simulations and two real data applications are performed to compare the performances of the estimators for both small and large samples.
引用
收藏
页码:2094 / 2111
页数:18
相关论文
共 61 条
  • [1] Classification of Phishing Email Using Random Forest Machine Learning Technique
    Akinyelu, Andronicus A.
    Adewumi, Aderemi O.
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [2] Al-Babtain A, 2015, COMMUN STAT SIMUL CO
  • [3] Aleem M, 2013, P 11 INT C STAT SCI, V25, P93
  • [4] Alizadeh M, 2015, HACET J MATH STAT
  • [5] Alkasasbeh M.R. Raqab., 2009, StatisticalMethodology, V6, P262, DOI [10.1016/j.stamet.2008.10.001, DOI 10.1016/J.STAMET.2008.10.001]
  • [6] A TEST OF GOODNESS OF FIT
    ANDERSON, TW
    DARLING, DA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1954, 49 (268) : 765 - 769
  • [7] ASYMPTOTIC THEORY OF CERTAIN GOODNESS OF FIT CRITERIA BASED ON STOCHASTIC PROCESSES
    ANDERSON, TW
    DARLING, DA
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02): : 193 - 212
  • [8] Bidram H, 2013, SORT-STAT OPER RES T, V37, P211
  • [9] Bourguignon M, 2013, J STAT THEORY APPL, V12, P129
  • [10] Casella G., 2021, Statistical inference