Gerasimov's theorem and N-Koszul algebras

被引:23
作者
Berger, Roland [1 ]
机构
[1] Univ St Etienne, Fac Sci & Tech, Math Lab, F-42023 St Etienne 2, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2009年 / 79卷
关键词
MACMAHON MASTER THEOREM; CALABI-YAU ALGEBRAS; HOMOGENEOUS ALGEBRAS; GRADED ALGEBRAS; DIMENSION-3; DEFORMATIONS; PROPERTY; SERIES; FORMS;
D O I
10.1112/jlms/jdp005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to graded algebras A having a single homogeneous relation. We give a criterion for A to be N-Koszul, where N is the degree of the relation. This criterion uses a theorem of Gerasimov. As a consequence of the criterion, some new examples of N-Koszul algebras are presented. We give an alternative proof of Gerasimov's theorem for N = 2, which is related to Dubois-Violette's theorem concerning a matrix description of the Koszul and AS-Gorenstein algebras of global dimension 2. We determine which of the Poincare-Birkhoff-Witt deformations of a symplectic form are Calabi-Yau.
引用
收藏
页码:631 / 648
页数:18
相关论文
共 34 条
[1]  
[Anonymous], 1994, KTheory
[2]  
[Anonymous], ALGEBRE
[3]   GRADED ALGEBRAS OF GLOBAL DIMENSION-3 [J].
ARTIN, M ;
SCHELTER, WF .
ADVANCES IN MATHEMATICS, 1987, 66 (02) :171-216
[4]   MODULES OVER REGULAR ALGEBRAS OF DIMENSION-3 [J].
ARTIN, M ;
TATE, J ;
VANDENBERGH, M .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :335-388
[5]  
BACKELIN J, 1978, CR ACAD SCI A MATH, V287, P843
[6]  
Backelin J., 1985, REV ROUMAINE MATH PU, V30, P85
[7]   Koszul duality patterns in representation theory [J].
Beilinson, A ;
Ginzburg, V ;
Soergel, W .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :473-527
[8]   Homogeneous algebras [J].
Berger, R ;
Dubois-Violette, M ;
Wambst, M .
JOURNAL OF ALGEBRA, 2003, 261 (01) :172-185
[9]   Koszulity for nonquadratic algebras [J].
Berger, R .
JOURNAL OF ALGEBRA, 2001, 239 (02) :705-734
[10]   Confluence and Koszulity [J].
Berger, R .
JOURNAL OF ALGEBRA, 1998, 201 (01) :243-283