Quantized output feedback stabilization for nonlinear discrete-time systems subject to saturating actuator

被引:21
作者
Song, Gongfei [1 ]
Li, Tao [1 ]
Li, Yuanlu [1 ]
Lu, Junwei [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Informat & Control, CICAEET, B DAT, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210042, Jiangsu, Peoples R China
关键词
Saturating actuator; Output feedback stabilization; Quantized control input; Quantized output; Nonlinear discrete-time systems; LEADER-FOLLOWING CONSENSUS; STOCHASTIC-SYSTEMS; STABILITY ANALYSIS; UNCERTAIN SYSTEMS; DESIGN;
D O I
10.1007/s11071-015-2327-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The quantized output feedback stabilization problem for nonlinear discrete-time systems with saturating actuator is investigated. The nonlinearity is assumed to satisfy the local Lipschitz condition. Different from the previous results where the Lipschitz constant is predetermined, a more general case is considered, where the maximum admissible Lipschitz constant through convex optimization is obtained. In this framework, two kinds of quantizations are derived simultaneously: quantized control input and quantized output. Furthermore, sufficient conditions for the existence of static output feedback control laws are given. The desired controllers ensure that all the trajectories of the closed-loop system will converge to a minimal ellipsoid for every initial condition emanating from a large admissible domain. Finally, four illustrative examples are provided to show the effectiveness of the proposed approach.
引用
收藏
页码:305 / 317
页数:13
相关论文
共 33 条
[1]   LMI optimization approach to robust H∞ observer design and static output feedback stabilization for discrete-time nonlinear uncertain systems [J].
Abbaszadeh, Masoud ;
Marquez, Horacio J. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2009, 19 (03) :313-340
[2]   Stability analysis and output-feedback stabilisation of discrete-time systems with an interval time-varying state delay [J].
Chen, K. F. ;
Fong, Ik .
IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (04) :563-572
[3]   The sector bound approach to quantized feedback control [J].
Fu, MY ;
Xie, LH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1698-1711
[4]   A new approach to quantized feedback control systems [J].
Gao, Huijun ;
Chen, Tongwen .
AUTOMATICA, 2008, 44 (02) :534-542
[5]   H∞ estimation for uncertain systems with limited communication capacity [J].
Gao, Huijun ;
Chen, Tongwen .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (11) :2070-2084
[6]   Robust H∞ output feedback control with partly quantised information [J].
Ge, Yang ;
Wang, Jingcheng ;
Li, Chuang ;
Zhang, Langwen .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (04) :523-536
[7]  
Hu Tingshu, 2001, CONTROL ENGN SER
[8]   Quadratic stabilization of sampled-data systems with quantization [J].
Ishii, H ;
Francis, BA .
AUTOMATICA, 2003, 39 (10) :1793-1800
[9]  
Jiang Zhongping, 2013, [自动化学报, Acta Automatica Sinica], V39, P1820
[10]   Stochastic sampled-data control for state estimation of time-varying delayed neural networks [J].
Lee, Tae H. ;
Park, Ju H. ;
Kwon, O. M. ;
Lee, S. M. .
NEURAL NETWORKS, 2013, 46 :99-108