Products of ideals may not be Golod

被引:12
作者
De Stefani, Alessandro [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
关键词
SYMBOLIC POWERS; PROPERTY; SERIES;
D O I
10.1016/j.jpaa.2015.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit an example of a product of two proper monomial ideals such that the residue class ring is not Golod. We also discuss the strongly Golod property for rational powers of monomial ideals, and introduce some sufficient conditions for weak Golodness of monomial ideals. Along the way, we ask some related questions. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2289 / 2306
页数:18
相关论文
共 22 条
  • [1] A COUNTEREXAMPLE TO A CONJECTURE OF SERRE
    ANICK, DJ
    [J]. ANNALS OF MATHEMATICS, 1982, 115 (01) : 1 - 33
  • [2] Avramov L., 1971, Matematicheskie Zametki, V9, P53
  • [3] Avramov LL, 1998, PROG MATH, V166, P1
  • [4] On the golod property of Stanley-Reisner rings
    Berglund, Alexander
    Joellenbeck, Michael
    [J]. JOURNAL OF ALGEBRA, 2007, 315 (01) : 249 - 273
  • [5] ON MULTIGRADED RESOLUTIONS
    BRUNS, W
    HERZOG, J
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 118 : 245 - 257
  • [6] BUCHSBAUM DA, 1973, J ALGEBRA, V25, P259, DOI 10.1016/0021-8693(73)90044-6
  • [7] The Golod property for products and high symbolic powers of monomial ideals
    Fakhari, S. A. Seyed
    Welker, V.
    [J]. JOURNAL OF ALGEBRA, 2014, 400 : 290 - 298
  • [8] GOLOD ES, 1962, DOKL AKAD NAUK SSSR+, V144, P479
  • [9] Grayson Daniel R., Macaulay 2, a software system for research in algebraic geometry
  • [10] Gulliksen Tor H., 1969, QUEENS PAPER PURE AP, V20