Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures

被引:884
作者
Wu, Y
Xiang, J
Yang, C
Lu, W
Lieber, CM [1 ]
机构
[1] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[2] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 日本科学技术振兴机构;
关键词
D O I
10.1038/nature02674
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Substantial effort has been placed on developing semiconducting carbon nanotubes(1-3) and nanowires(4) as building blocks for electronic devices-such as field-effect transistors-that could replace conventional silicon transistors in hybrid electronics or lead to stand-alone nanosystems(4,5). Attaching electric contacts to individual devices is a first step towards integration, and this step has been addressed using lithographically defined metal electrodes(1-4,6-8). Yet, these metal contacts define a size scale that is much larger than the nanometre-scale building blocks, thus limiting many potential advantages. Here we report an integrated contact and interconnection solution that overcomes this size constraint through selective transformation of silicon nanowires into metallic nickel silicide (NiSi) nanowires. Electrical measurements show that the single crystal nickel silicide nanowires have ideal resistivities of about 10 muOmega cm and remarkably high failure-current densities, > 10(8) A cm(-2). In addition, we demonstrate the fabrication of nickel silicide/silicon (NiSi/Si) nanowire heterostructures with atomically sharp metal-semiconductor interfaces. We produce field-effect transistors based on those heterostructures in which the source-drain contacts are defined by the metallic NiSi nanowire regions. Our approach is fully compatible with conventional planar silicon electronics and extendable to the 10-nm scale using a crossed-nanowire architecture.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 21 条
  • [1] [Anonymous], 2003, INT TECHNOLOGY ROADM
  • [2] Silicon nano-transistors for logic applications
    Chau, R
    Boyanov, B
    Doyle, B
    Doczy, M
    Datta, S
    Hareland, S
    Jin, B
    Kavalieros, J
    Metz, M
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 19 (1-2) : 1 - 5
  • [3] High performance silicon nanowire field effect transistors
    Cui, Y
    Zhong, ZH
    Wang, DL
    Wang, WU
    Lieber, CM
    [J]. NANO LETTERS, 2003, 3 (02) : 149 - 152
  • [4] Diameter-controlled synthesis of single-crystal silicon nanowires
    Cui, Y
    Lauhon, LJ
    Gudiksen, MS
    Wang, JF
    Lieber, CM
    [J]. APPLIED PHYSICS LETTERS, 2001, 78 (15) : 2214 - 2216
  • [5] Carbon nanotubes: Synthesis, integration, and properties
    Dai, HJ
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) : 1035 - 1044
  • [6] Carbon nanotubes as Schottky barrier transistors
    Heinze, S
    Tersoff, J
    Martel, R
    Derycke, V
    Appenzeller, J
    Avouris, P
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (10)
  • [7] Directed assembly of one-dimensional nanostructures into functional networks
    Huang, Y
    Duan, XF
    Wei, QQ
    Lieber, CM
    [J]. SCIENCE, 2001, 291 (5504) : 630 - 633
  • [8] Ballistic carbon nanotube field-effect transistors
    Javey, A
    Guo, J
    Wang, Q
    Lundstrom, M
    Dai, HJ
    [J]. NATURE, 2003, 424 (6949) : 654 - 657
  • [9] Epitaxial core-shell and core-multishell nanowire heterostructures
    Lauhon, LJ
    Gudiksen, MS
    Wang, CL
    Lieber, CM
    [J]. NATURE, 2002, 420 (6911) : 57 - 61
  • [10] Nanoscale science and technology: Building a big future from small things
    Lieber, CM
    [J]. MRS BULLETIN, 2003, 28 (07) : 486 - 491