Analysis of photoluminescence background of Raman spectra of carbon nanotips grown by plasma-enhanced chemical vapor deposition

被引:8
作者
Wang, B. B. [1 ,2 ]
Ostrikov, K. [1 ,5 ]
Tsakadze, Z. L. [3 ,4 ]
Xu, S. [4 ]
机构
[1] CSIRO Mat Sci & Engn, Lindfield, NSW 2070, Australia
[2] Chongqing Univ Technol, Coll Math & Phys, Chongqing 400054, Peoples R China
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 637616, Singapore
[4] Nanyang Technol Univ, NIE, Plasma Sources & Applicat Ctr, Singapore 637616, Singapore
[5] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
carbon; hydrogen; nanostructured materials; nanotechnology; nitrogen; photoluminescence; plasma CVD; scanning electron microscopy; surface morphology; REACTIVE PLASMAS; FIELD-EMISSION; ION-BOMBARDMENT; DIAMOND FILMS; C-H; GRAPHITE; NANOTUBES; NANOSTRUCTURES; CATALYST; ARRAYS;
D O I
10.1063/1.3168496
中图分类号
O59 [应用物理学];
学科分类号
摘要
Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm(-1) besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.
引用
收藏
页数:7
相关论文
共 51 条
[1]   Photoluminescence in low defect density a-C:H and a-C:H:N [J].
Anguita, JV ;
Young, WT ;
Khan, RU ;
Silva, SRP ;
Haq, S ;
Sturland, I ;
Pritchard, A .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 :821-824
[2]   Photoluminescence from polymer-like hydrogenated and nitrogenated amorphous carbon films [J].
Anguita, JV ;
Silva, SRP ;
Young, W .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (09) :5175-5179
[3]   Raman spectroscopy of hydrogenated amorphous carbons [J].
Casiraghi, C ;
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2005, 72 (08)
[4]   The parametric study of carbon nanotips grown by MWPECVD with controllable sharpness using various metallic catalysts [J].
Chen, Chien-Chung ;
Chen, Yi-Hui ;
Chen, Chia-Fu .
MICROELECTRONIC ENGINEERING, 2006, 83 (11-12) :2510-2515
[5]   Amorphous carbon coated silicon nanotips fabricated by MPCVD using anodic aluminum oxide as the template [J].
Chen, Te-Ming ;
Pan, Fu-Ming ;
Hung, Jui-Yi ;
Chang, L. ;
Wu, Shich-Chuan ;
Chen, Chia-Fu .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (04) :D215-D219
[6]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[7]   Nanowire sensor response to reactive gas environment [J].
Cvelbar, Uros ;
Ostrikov, Kostya ;
Drenik, Aleksander ;
Mozetic, Miran .
APPLIED PHYSICS LETTERS, 2008, 92 (13)
[8]   Effects of ions and atomic hydrogen in plasma-assisted growth of single-walled carbon nanotubes [J].
Denysenko, I. ;
Ostrikov, K. ;
Yu, M. Y. ;
Azarenkov, N. A. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
[9]   Inductively coupled Ar/CH4/H2 plasmas for low-temperature deposition of ordered carbon nanostructures [J].
Denysenko, IB ;
Xu, S ;
Long, JD ;
Rutkevych, PP ;
Azarenkov, NA ;
Ostrikov, K .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) :2713-2724
[10]   Interpretation of infrared and Raman spectra of amorphous carbon nitrides [J].
Ferrari, AC ;
Rodil, SE ;
Robertson, J .
PHYSICAL REVIEW B, 2003, 67 (15)