Coupling metal-organic frameworks and g-C3N4 to derive Fe@N-doped graphene-like carbon for peroxymonosulfate activation: Upgrading framework stability and performance

被引:196
|
作者
Liu, Chao [1 ]
Liu, Liyuan [1 ]
Tian, Xing [1 ]
Wang, Yiping [1 ]
Li, Ruoyu [1 ]
Zhang, Yuting [1 ]
Song, Zilong [1 ]
Xu, Bingbing [2 ]
Chu, Wei [3 ]
Qi, Fei [1 ]
Ikhlaq, Amir [4 ]
机构
[1] Beijing Forestry Univ, Coll Environm Sci & Engn, Beijing Key Lab Source Control Technol Water Poll, Beijing 100083, Peoples R China
[2] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
[3] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China
[4] Univ Engn & Technol, Inst Environm Engn & Res, GT Rd, Lahore 54890, Punjab, Pakistan
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Fe@N-doped graphene-like carbon; g-C3N4; metal-organic framework; peroxymonosulfate; sulfate radical; CATALYTIC-OXIDATION; POROUS CARBON; ENHANCED ACTIVATION; HYDROXYL RADICALS; OXYGEN REDUCTION; AQUEOUS-SOLUTION; RATE CONSTANTS; DEGRADATION; EFFICIENT; PERSULFATE;
D O I
10.1016/j.apcatb.2019.117763
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A highly active mediator (Fe@N-doped graphene-like carbon) for peroxymonosulfate (PMS) activation was prepared by employing g-C3N4 assisting NH2-MIL-53(Fe) as the precursor. The addition of combined nitrogen sources (g-C3N4 and NH2 groups) not only stabilized the phase composition and framework morphology, but also improved PMS activation performance significantly. In addition, the introduction of g-C3N4 increased the surface area. Electron paramagnetic resonance (EPR) spectroscopy and radical quenching experiments identified singlet oxygen (O-1(2)), superoxide radicals (O-2(center dot-)), hydroxyl radicals (center dot OH), and sulfate radicals (SO4 center dot-) as the reactive oxygen species (ROS) in 4-aminobenzoic acid ethyl ether (ABEE) degradation via a combination process of nonradical and radical processes. The variable chemical valences of iron nanoparticles and quaternary-N, pyrrolic-N, pyridinic-N, and carbonyl (C = 0) groups in the support contributed to the outstanding catalytic activity. A possible mechanism for PMS activation by Fe@N-doped graphene-like carbon for ABEE degradation was proposed, which involved sp(2) hybridized carbon and electron-rich sp(2) sites of the graphitic domain activating PMS via electron transfer. Intermediates were identified using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). The degradation pathway of ABEE was reported for the first time in the advanced oxidation process field. Based on intermediate identification of sulfamethoxazole (SMX) degradation, six intermediates were first reported and a new reaction pathway established. This work provides a promising approach to the rational design of high-performance active mediators for environmental remediation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Z-Scheme TiO2/g-C3N4 Activation of Peroxymonosulfate to Remove Organic Pollutants: Properties and Mechanism
    Zhang, Yujie
    Ren, Xuechang
    Yang, Linhai
    Wang, Huijuan
    Chen, Juxiang
    Li, Jinhui
    Wang, Rong
    CHEMISTRYSELECT, 2023, 8 (27):
  • [22] Graphene-Like Nitrogen-Doped Carbon Nanosheet Prepared from Direct Calcination of Dopamine Confined by g-C3N4 for Oxygen Reduction
    Liu, Xinghuan
    Kang, Junjie
    Dai, Yu
    Dong, Changchang
    Guo, Xuhong
    Jia, Xin
    ADVANCED MATERIALS INTERFACES, 2018, 5 (14):
  • [23] Mg-induced g-C3N4 synthesis of nitrogen-doped graphitic carbon for effective activation of peroxymonosulfate to degrade organic contaminants
    Xu, Jihong
    Song, Jianxin
    Min, Yulin
    Xu, Qunjie
    Shi, Penghui
    CHINESE CHEMICAL LETTERS, 2022, 33 (06) : 3113 - 3118
  • [24] g-C3N4/Metal-Organic Framework Nanosheet/CuO Heterostructure for the Visible Photocatalytic Degradation of Tetracycline
    Li, Xiangming
    Wang, Shirong
    Ye, Dongcheng
    Wen, Weishan
    Li, Haitao
    Ma, Zequn
    Li, Guanghuan
    Fu, Wen
    Fu, Meng
    ACS APPLIED NANO MATERIALS, 2024, 7 (02) : 1586 - 1597
  • [25] The properties and photocatalytic performance comparison of Fe3+-doped g-C3N4 and Fe2O3/g-C3N4 composite catalysts
    Hu, Shaozheng
    Jin, Ruirui
    Lu, Guang
    Liu, Dan
    Gui, Jianzhou
    RSC ADVANCES, 2014, 4 (47): : 24863 - 24869
  • [26] Well-dispersed iron and nitrogen co-doped hollow carbon microsphere anchoring by g-C3N4 for efficient peroxymonosulfate activation
    Chen, Likun
    Xing, Kewen
    Shentu, Qikai
    Huang, Yifei
    Lv, Weiyang
    Yao, Yuyuan
    CHEMOSPHERE, 2021, 280 (280)
  • [27] Fe(III)-Doped g-C3N4 Mediated Peroxymonosulfate Activation for Selective Degradation of Phenolic Compounds via High-Valent Iron-Oxo Species
    Li, Hongchao
    Shan, Chao
    Pan, Bingcai
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (04) : 2197 - 2205
  • [28] Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction
    Wang, Ruwen
    Yan, Tingting
    Han, Lupeng
    Chen, Guorong
    Li, Hongrui
    Zhang, Jianping
    Shi, Liyi
    Zhang, Dengsong
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) : 5752 - 5761
  • [29] Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis
    Xu, Lijie
    Qi, Lanyue
    Han, Yu
    Lu, Wenyuan
    Han, Jiangang
    Qiao, Weichuan
    Mei, Xiang
    Pan, Yuwei
    Song, Kai
    Ling, Chen
    Gan, Lu
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [30] Facile synthesis of Mn, Ce co-doped g-C3N4 composite for peroxymonosulfate activation towards organic contaminant degradation
    Lai, Cui
    Yan, Huchuan
    Wang, Dongbo
    Liu, Shiyu
    Zhou, Xuerong
    Li, Xiaopei
    Zhang, Mingming
    Li, Ling
    Fu, Yukui
    Xu, Fuhang
    Yang, Xiaofeng
    Huo, Xiuqin
    CHEMOSPHERE, 2022, 293