A Cocrystal Precursor Strategy for Carbon-Rich Graphitic Carbon Nitride toward High-Efficiency Photocatalytic Overall Water Splitting

被引:71
作者
Fang, Xiaoyu [1 ]
Gao, Rui [2 ]
Yang, Yongsheng [1 ,3 ]
Yan, Dongpeng [1 ,2 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
[3] Shenyang Normal Univ, Inst Catalysis Energy & Environm, Coll Chem & Chem Engn, Shenyang 110034, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRONIC-STRUCTURE; GRAPHENE OXIDE; Z-SCHEME; HYDROGEN; NANOSHEETS; G-C3N4; HETEROJUNCTION; SEMICONDUCTOR; NANOPARTICLES; EVOLUTION;
D O I
10.1016/j.isci.2019.05.015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct and efficient photocatalytic overall water splitting is crucial for the sustainable conversion and storage of renewable solar energy. Herein, we present the design of a carbon-rich graphitic carbon nitride (C-co-C3N4), prepared from a layered molecular cocrystal precursor. The cocrystal microsheets were synthesized using a facile hydrothermal process. Following two-step thermal treatment and liquid exfoliation, the product maintains the 2D morphology owing to the toptactic transformation process. The C-co-C3N4 exhibits an enhanced photogenerated electron-hole separation, high charge transport capacity, and prolonged lifetime of the carriers, relative to the g-C3N4 system. In the absence of any sacrificial reagent or co-catalyst, the C-co-C3N4 microsheets exhibit a high photocatalytic activity. The work presented in this report supplies a cocrystal route for the orderly molecular self-assembly of precursor materials to tailor the chemical compositions and electronic structures. Moreover, the generation of a highly efficient water-splitting photocatalyst has larger implications for sustainable energy applications.
引用
收藏
页码:22 / +
页数:24
相关论文
共 48 条
[1]   Coupling of Bifunctional CoMn-Layered Double Hydroxide@Graphitic C3N4 Nanohybrids towards Efficient Photoelectrochemical Overall Water Splitting [J].
Arif, Muhammad ;
Yasin, Ghulam ;
Shakeel, Muhammad ;
Fang, Xiaoyu ;
Gao, Rui ;
Ji, Shengfu ;
Yan, Dongpeng .
CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (08) :1045-1052
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[4]   Fast Photoelectron Transfer in (Cring)-C3N4 Plane Heterostructural Nanosheets for Overall Water Splitting [J].
Che, Wei ;
Cheng, Weiren ;
Yao, Tao ;
Tang, Fumin ;
Liu, Wei ;
Su, Hui ;
Huang, Yuanyuan ;
Liu, Qinghua ;
Liu, Jinkun ;
Hu, Fengchun ;
Pan, Zhiyun ;
Sun, Zhihu ;
Wei, Shiqiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (08) :3021-3026
[5]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[6]   Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation [J].
Dai, Kai ;
Lu, Luhua ;
Liang, Changhao ;
Liu, Qi ;
Zhu, Guangping .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 156 :331-340
[7]   Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron-Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response [J].
Du, Aijun ;
Sanvito, Stefano ;
Li, Zhen ;
Wang, Dawei ;
Jiao, Yan ;
Liao, Ting ;
Sun, Qiao ;
Ng, Yun Hau ;
Zhu, Zhonghua ;
Amal, Rose ;
Smith, Sean C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4393-4397
[8]   Porous C3N4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution [J].
Duan, Jingjing ;
Chen, Sheng ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
ACS NANO, 2015, 9 (01) :931-940
[9]   SOLID-STATE NUCLEOPHILIC AROMATIC-SUBSTITUTION REACTION OF A CARBOXYLIC-ACID COCRYSTAL [J].
ETTER, MC ;
FRANKENBACH, GM ;
BERNSTEIN, J .
TETRAHEDRON LETTERS, 1989, 30 (28) :3617-3620
[10]   Vapor-phase π-π molecular recognition: a fast and solvent-free strategy towards the formation of co-crystalline hollow microtube with 1D optical waveguide and up-conversion emission [J].
Fang, Xiaoyu ;
Yang, Xiaogang ;
Yan, Dongpeng .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (07) :1632-1637