Distance magic circulant graphs

被引:22
作者
Cichacz, Sylwia [1 ]
Froncek, Dalibor [2 ]
机构
[1] AGH Univ Sci & Technol, Krakow, Poland
[2] Univ Minnesota Duluth, Duluth, MN 55812 USA
关键词
Distance magic labeling; Group distance magic labeling; Circulant graphs;
D O I
10.1016/j.disc.2015.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph of order n. A distance magic labeling of G is a bijection l : V -> {1, 2,...,n} for which there exists a positive integer k such that Sigma(x is an element of N(nu))l(x) = k for all nu is an element of V, where N(nu) is the neighborhood of nu. In this paper we deal with circulant graphs C-n(1, p). The circulant graph C-n(1, p) is the graph on the vertex set V = {x(0), x(1),...,x(n-1)} with edges (x(i), x(i+p)) for i = 0,...,n-1 where i+p is taken modulo n. We completely characterize distance magic graphs C-n(1,p) for p odd. We also give some sufficient conditions for p even. Moreover, we also consider a group distance magic labeling of C-n(1,p). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 94
页数:11
相关论文
共 50 条