Characterizing the beam properties of terahertz quantum-cascade lasers

被引:15
作者
Richter, H. [1 ]
Rothbart, N. [1 ]
Huebers, H. -W. [1 ,2 ]
机构
[1] German Aerosp Ctr DLR, Inst Planetary Res, D-12489 Berlin, Germany
[2] Tech Univ Berlin, Inst Opt & Atomare Phys, D-10623 Berlin, Germany
关键词
Terahertz; Far-infrared; Quantum-cascade laser; Beam profile; Wavefront measurement; THZ; COMPACT; MODE;
D O I
10.1007/s10762-014-0084-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Terahertz quantum-cascade lasers (QCLs) are very promising radiation sources for many scientific and commercial applications. Shaping and characterizing the beam profile of a QCL is crucial for any of these applications. Usually the beam profile should be as close as possible to a fundamental Gaussian TEM00 mode. In order to completely characterize the laser beam the power and the wavefront have to be measured. We describe methods for characterizing the beam properties of QCLs. Several QCLs with single-plasmon waveguide and emission frequencies between 2 and 5 THz are investigated. The beam profiles of these lasers are shaped into almost fundamental Gaussian modes using dedicated lenses. The beam propagation factor M-2 is as low as 1.2. The wavefront is measured along the axis of propagation with a THz Hartmann sensor. Its curvature behaves as expected for a Gaussian beam. The applied methods can be transferred to any other THz beam.
引用
收藏
页码:686 / 698
页数:13
相关论文
共 40 条
  • [1] Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions
    Adam, AJL
    Kasalynas, I
    Hovenier, JN
    Klaassen, TO
    Gao, JR
    Orlova, EE
    Williams, BS
    Kumar, S
    Hu, Q
    Reno, JL
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (15)
  • [2] Horn antennas for terahertz quantum cascade lasers
    Amanti, M. I.
    Fischer, M.
    Walther, C.
    Scalari, G.
    Faist, J.
    [J]. ELECTRONICS LETTERS, 2007, 43 (10) : 573 - 574
  • [3] [Anonymous], 2012, TERAHERTZ TECHNIQUES
  • [4] Barbieri S, 2011, NAT PHOTONICS, V5, P306, DOI [10.1038/NPHOTON.2011.49, 10.1038/nphoton.2011.49]
  • [5] Born M., 1999, Principles of optics, Vseventh
  • [6] High power terahertz quantum cascade lasers with symmetric wafer bonded active regions
    Brandstetter, Martin
    Deutsch, Christoph
    Krall, Michael
    Detz, Hermann
    MacFarland, Donald C.
    Zederbauer, Tobias
    Andrews, Aaron M.
    Schrenk, Werner
    Strasser, Gottfried
    Unterrainer, Karl
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (17)
  • [7] Turn-key compact high temperature terahertz quantum cascade lasers:: imaging and room temperature detection
    Bründermann, E
    Havenith, M
    Scalari, G
    Giovannini, M
    Faist, J
    Kunsch, J
    Mechold, L
    Abraham, M
    [J]. OPTICS EXPRESS, 2006, 14 (05) : 1829 - 1841
  • [8] THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing
    Consolino, Luigi
    Bartalini, Saverio
    Beere, Harvey E.
    Ritchie, David A.
    Vitiello, Miriam Serena
    De Natale, Paolo
    [J]. SENSORS, 2013, 13 (03): : 3331 - 3340
  • [9] Transformation of the multimode terahertz quantum cascade laser beam into a Gaussian, using a hollow dielectric waveguide
    Danylov, Andriy A.
    Waldman, Jerry
    Goyette, Thomas M.
    Gatesman, Andrew J.
    Giles, Robert H.
    Linden, Kurt J.
    Neal, William R.
    Nixon, William E.
    Wanke, Michael C.
    Reno, John L.
    [J]. APPLIED OPTICS, 2007, 46 (22) : 5051 - 5055
  • [10] Frequency modulation spectroscopy with a THz quantum-cascade laser
    Eichholz, R.
    Richter, H.
    Wienold, M.
    Schrottke, L.
    Hey, R.
    Grahn, H. T.
    Huebers, H. -W.
    [J]. OPTICS EXPRESS, 2013, 21 (26): : 32199 - 32206