Asymptotic properties of coupled forward-backward stochastic differential equations

被引:3
作者
Cruzeiro, Ana Bela [1 ,2 ]
Gomes, Andre de Oliveira [3 ,4 ]
Zhang, Liangquan [5 ,6 ]
机构
[1] GFMUL, P-1049001 Lisbon, Portugal
[2] Dept Matemat IST TUL, P-1049001 Lisbon, Portugal
[3] Univ Lisbon, GFMUL Grp Fis Matemat, P-1649003 Lisbon, Portugal
[4] Humboldt Univ, Inst Math, Berlin, Germany
[5] Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China
[6] Univ Bretagne Occidentale, Math Lab, F-29285 Brest, France
基金
巴西圣保罗研究基金会;
关键词
Forward-backward stochastic differential equations; large deviation principle; Meyer-Zheng topology; LARGE DEVIATION PRINCIPLE;
D O I
10.1142/S021949371450004X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider coupled forward-backward stochastic differential equations (FBSDEs in short) with parameter epsilon > 0, of the following type {X-epsilon,X-t,X-x(s) = x + integral(s)(t) f(r,X-epsilon,X-t,X-x(r),Y epsilon(,t,x)(r))dr +root epsilon integral(s)(t) sigma(r, X-epsilon,X-t,X-x (r), Y-epsilon,Y-t,Y-x(r)) dW(r), Y-epsilon,Y-t,Y-x(s) = h(X-epsilon,X-t,X-x(T)) + integral(T)(s) g(r, X-epsilon,X-t,X-x(r), Y-epsilon,Y-t,Y-x(r), Z(epsilon,t,x)(r)) dr -integral(T)(s) Z(epsilon,t,x)(r) dW(r), 0 <= t <= s <= T. We study the asymptotic behavior of its solutions and establish a large deviation principle for the corresponding processes.
引用
收藏
页数:42
相关论文
共 33 条
[1]  
[Anonymous], 1968, TRANSLATIONS MATH MO, DOI DOI 10.1090/MMONO/023
[2]  
Atonelli F, 1993, Ann. Appl. Probab., V3, P777, DOI 10.1214/aoap/1177005363
[3]  
Azencott R., 1980, Grandes Deviations et Applications. cole d de Probabiliits de Saint-Flour VIII. Lecture Notes in Mathematics, P1
[5]   General Freidlin-Wentzell Large Deviations and positive diffusions [J].
Baldi, P. ;
Caramellino, L. .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) :1218-1229
[6]  
BALDI P, 1988, LECT NOTES MATH, V1316, P305
[7]  
Bismut J.-M., 1973, Mem. Amer. Math. Soc., V176
[8]   On weak solutions of backward stochastic differential equations [J].
Buckdahn, R ;
Engelbert, HJ ;
Rascanu, A .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2004, 49 (01) :16-50
[9]   Large deviation principle for diffusion processes under a sublinear expectation [J].
Chen ZengJing ;
Xiong Jie .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (11) :2205-2216
[10]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67