Sequential Nonparametric Tests for a Change in Distribution: An Application to Detecting Radiological Anomalies

被引:13
作者
Padilla, Oscar Hernan Madrid [1 ]
Athey, Alex [2 ]
Reinhart, Alex [3 ]
Scott, James G. [4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Univ Texas Austin, Appl Res Labs, Austin, TX USA
[3] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
[4] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
[5] Univ Texas Austin, McCombs Sch Business, Austin, TX 78712 USA
关键词
Anomaly detection; Kolmogorov-Smirnov test; Radiological survey; Sequential testing;
D O I
10.1080/01621459.2018.1476245
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sequential nonparametric test for detecting a change in distribution, based on windowed Kolmogorov-Smirnov statistics. The approach is simple, robust, highly computationally efficient, easy to calibrate, and requires no parametric assumptions about the underlying null and alternative distributions. We show that both the false-alarm rate and the power of our procedure are amenable to rigorous analysis, and that the method outperforms existing sequential testing procedures in practice. We then apply the method to the problem of detecting radiological anomalies, using data collected from measurements of the background gamma-radiation spectrum on a large university campus. In this context, the proposed method leads to substantial improvements in time-to-detection for the kind of radiological anomalies of interest in law-enforcement and border-security applications.Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
引用
收藏
页码:514 / 528
页数:15
相关论文
共 45 条
[1]  
Alam M.S., 2015, INT C EL ENG INF COM, P1, DOI [DOI 10.1109/ICEEICT.2015.7307353, 10.1109/ICEEICT.2015.7307353, 10.1109/iisa.2015.7387997]
[2]   Improving network anomaly detection via selective flow-based sampling [J].
Androulidakis, G. ;
Papavassiliou, S. .
IET COMMUNICATIONS, 2008, 2 (03) :399-409
[3]  
[Anonymous], 1993, DETECTION ABRUPT CHA
[4]   Multivariate statistical process control charts: An overview [J].
Bersimis, S. ;
Psarakis, S. ;
Panaretos, J. .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2007, 23 (05) :517-543
[5]   Multi-scale and real-time non-parametric approach for anomaly detection and localization [J].
Bertini, Marco ;
Del Bimbo, Alberto ;
Seidenari, Lorenzo .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2012, 116 (03) :320-329
[6]  
Cao Y., 2016, ANN OPER RES, V263, P163
[7]   OPTIMAL SEQUENTIAL DETECTION IN MULTI-STREAM DATA [J].
Chan, Hock Peng .
ANNALS OF STATISTICS, 2017, 45 (06) :2736-2763
[8]   OPTIMAL DETECTION OF MULTI-SAMPLE ALIGNED SPARSE SIGNALS [J].
Chan, Hock Peng ;
Walther, Guenther .
ANNALS OF STATISTICS, 2015, 43 (05) :1865-1895
[9]   A distribution-free test for anomalous gamma-ray spectra [J].
Chan, Kung-sik ;
Li, Jinzheng ;
Eichinger, William ;
Bai, Er-Wei .
RADIATION MEASUREMENTS, 2014, 63 :18-25
[10]   Noise-Adjusted Principal Component Analysis for Buried Radioactive Target Detection and Classification [J].
Du, Qian ;
Wei, Wei ;
May, Daniel ;
Younan, Nicolas H. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (06) :3760-3767