Thermolysis of Hydrated Antimony Pentoxide

被引:11
作者
Kovalenko, L. Yu. [1 ]
Yaroshenko, F. A. [1 ]
Burmistrov, V. A. [1 ]
Isaeva, T. N. [1 ]
Galimov, D. M. [2 ]
机构
[1] Chelyabinsk State Univ, Ul Bratev Kashirinykh 129, Chelyabinsk 454001, Russia
[2] South Ural State Univ, Pr Lenina 76, Chelyabinsk 454080, Russia
基金
俄罗斯基础研究基金会;
关键词
antimony oxides; polyantimonic acid; thermal analysis; pyrochlore structure; phase transformations; dehydration; ION-EXCHANGE PROPERTIES; POLYANTIMONIC ACID; PROTON CONDUCTION; MEMBRANES; SELECTIVITY; METALS;
D O I
10.1134/S0020168519060086
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermolysis of hydrated antimony pentoxide (HAP) has been studied in the temperature range from 25 to 1000 degrees C using a variety of experimental techniques: thermogravimetry, X-ray diffraction, pycnometry, elemental microanalysis, and mass spectrometry. The composition and structure of the forming phases have been determined. It has been shown that the initial stages of HAP thermolysis, in the temperature range 24-500 degrees C, include dehydration processes and the formation of anhydrous antimony pentoxide, Sb2O5. At temperatures above 500 degrees C, the process includes oxygen removal, the reduction of Sb(V) to Sb(III), and the formation of Sb6O13 and Sb2O4. The pyrochlore structure of HAP (sp. gr. Fd3m) has been shown to persist in the course of the phase transformations at temperatures below 700 degrees C. Analysis of our experimental data has allowed us to propose a model for crystallographic site occupancies in the pyrochlore-type structure of the phases obtained and determine their temperature stability ranges.
引用
收藏
页码:586 / 592
页数:7
相关论文
共 50 条
  • [21] Resilience in the antimony supply chain
    van den Brink, Susan
    Kleijn, Rene
    Sprecher, Benjamin
    Mancheri, Nabeel
    Tukker, Arnold
    [J]. RESOURCES CONSERVATION AND RECYCLING, 2022, 186
  • [22] Phase transition in niobium pentoxide supported on silica-alumina
    V. S. Braga
    F. A. C. Garcia
    J. A. Dias
    Sílvia C. L. Dias
    [J]. Journal of Thermal Analysis and Calorimetry, 2008, 92 : 851 - 855
  • [23] Phase transition in niobium pentoxide supported on silica-alumina
    Braga, V. S.
    Garcia, F. A. C.
    Dias, J. A.
    Dias, Silvia C. L.
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2008, 92 (03) : 851 - 855
  • [24] Thermolysis of Ru(acac)3 supported on silica and alumina
    Plyuto, YV
    Babich, IV
    Sharanda, LF
    de Wit, AM
    Mol, JC
    [J]. THERMOCHIMICA ACTA, 1999, 335 (1-2) : 87 - 91
  • [25] Thermolysis of Coprecipitated Copper(II)-Nickel(II) Hydroxides
    M. N. Kopylovich
    A. M. Kirillov
    A. K. Baev
    [J]. Russian Journal of Applied Chemistry, 2001, 74 : 12 - 17
  • [26] Crystallization kinetics of monatomic antimony
    Leng, Wenhao
    Chen, Yimin
    Zhang, Qian
    Sun, Lei
    Shen, Xiang
    Wang, Rongping
    Wang, Guoxiang
    Wang, Jun-Qiang
    Xu, Tiefeng
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (17)
  • [27] Keeping nursing home residents hydrated
    Mentes, Janet C.
    Chang, Betty L.
    Morris, Joseph
    [J]. WESTERN JOURNAL OF NURSING RESEARCH, 2006, 28 (04) : 392 - 406
  • [28] Interactions of arbutin with dry and hydrated bilayers
    Oliver, AE
    Hincha, DK
    Crowe, LM
    Crowe, JH
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1998, 1370 (01): : 87 - 97
  • [29] Investigation of Thermolysis Processes in Chromium(III) Aromatic Carboxylates
    D. S. Tolstoguzov
    D. A. Zherebtsov
    K. R. Smolyakova
    K. V. Matveev
    E. I. Dubinina
    G. A. Khasanova
    [J]. Reviews and Advances in Chemistry, 2024, 14 (3): : 216 - 228
  • [30] Thermodynamic study of anhydrous and hydrated quercetin
    Gheorghe, D.
    Neacsu, A.
    Sofronia, A.
    Marinescu, C.
    Perisanu, S.
    [J]. JOURNAL OF CHEMICAL SCIENCES, 2024, 137 (01)