Ranking non-synonymous single nucleotide polymorphisms based on disease concepts

被引:150
作者
Shihab, Hashem A. [1 ,2 ]
Gough, Julian [3 ]
Mort, Matthew [4 ]
Cooper, David N. [4 ]
Day, Ian N. M. [1 ,2 ]
Gaunt, Tom R. [1 ,2 ]
机构
[1] Univ Bristol, Bristol Ctr Syst Biomed, Bristol BS8 2BN, Avon, England
[2] Univ Bristol, MRC Integrat Epidemiol Unit, Sch Social & Community Med, Bristol BS8 2BN, Avon, England
[3] Univ Bristol, Dept Comp Sci, Bristol BS8 1UB, Avon, England
[4] Cardiff Univ, Sch Med, Inst Med Genet, Cardiff CF14 4XN, S Glam, Wales
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
SNV; nsSNPs; Disease causing; Disease specific; FATHMM; HMMs; SIFT; PolyPhen; Bioinformatics; FUNCTIONAL IMPACT; MUTATIONS; PREDICTION; DATABASE; TOOL; CONSEQUENCES;
D O I
10.1186/1479-7364-8-11
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
As the number of non-synonymous single nucleotide polymorphisms (nsSNPs) identified through whole-exome/whole- genome sequencing programs increases, researchers and clinicians are becoming increasingly reliant upon computational prediction algorithms designed to prioritize potential functional variants for further study. A large proportion of existing prediction algorithms are 'disease agnostic' but are nevertheless quite capable of predicting when a mutation is likely to be deleterious. However, most clinical and research applications of these algorithms relate to specific diseases and would therefore benefit from an approach that discriminates between functional variants specifically related to that disease from those which are not. In a whole-exome/whole- genome sequencing context, such an approach could substantially reduce the number of false positive candidate mutations. Here, we test this postulate by incorporating a disease-specific weighting scheme into the Functional Analysis through Hidden Markov Models (FATHMM) algorithm. When compared to traditional prediction algorithms, we observed an overall reduction in the number of false positives identified using a disease-specific approach to functional prediction across 17 distinct disease concepts/categories. Our results illustrate the potential benefits of making disease-specific predictions when prioritizing candidate variants in relation to specific diseases.
引用
收藏
页数:6
相关论文
共 26 条
[11]   Distinguishing cancer-associated missense mutations from common polymorphisms [J].
Kaminker, Joshua S. ;
Zhang, Yan ;
Waugh, Allison ;
Haverty, Peter M. ;
Peters, Brock ;
Sebisanovic, Dragan ;
Stinson, Jeremy ;
Forrest, William F. ;
Bazan, J. Fernando ;
Seshagiri, Somasekar ;
Zhang, Zemin .
CANCER RESEARCH, 2007, 67 (02) :465-473
[12]   ON INFORMATION AND SUFFICIENCY [J].
KULLBACK, S ;
LEIBLER, RA .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (01) :79-86
[13]   THE UNIFIED MEDICAL LANGUAGE SYSTEM [J].
LINDBERG, DAB ;
HUMPHREYS, BL ;
MCCRAY, AT .
METHODS OF INFORMATION IN MEDICINE, 1993, 32 (04) :281-291
[14]   In Silico Functional Profiling of Human Disease-Associated and Polymorphic Amino Acid Substitutions [J].
Mort, Matthew ;
Evani, Uday S. ;
Krishnan, Vidhya G. ;
Kamati, Kishore K. ;
Baenziger, Peter H. ;
Bagchi, Angshuman ;
Peters, Brandon J. ;
Sathyesh, Rakesh ;
Li, Biao ;
Sun, Yanan ;
Xue, Bin ;
Shah, Nigam H. ;
Kann, Maricel G. ;
Cooper, David N. ;
Radivojac, Predrag ;
Mooney, Sean D. .
HUMAN MUTATION, 2010, 31 (03) :335-346
[15]   VariBench: A Benchmark Database for Variations [J].
Nair, Preethy Sasidharan ;
Vihinen, Mauno .
HUMAN MUTATION, 2013, 34 (01) :42-49
[16]   Predicting deleterious amino acid substitutions [J].
Ng, PC ;
Henikoff, S .
GENOME RESEARCH, 2001, 11 (05) :863-874
[17]   Predicting the functional impact of protein mutations: application to cancer genomics [J].
Reva, Boris ;
Antipin, Yevgeniy ;
Sander, Chris .
NUCLEIC ACIDS RESEARCH, 2011, 39 (17) :E118-U85
[18]   Predicting the functional consequences of cancer-associated amino acid substitutions [J].
Shihab, Hashem A. ;
Gough, Julian ;
Cooper, David N. ;
Day, Ian N. M. ;
Gaunt, Tom R. .
BIOINFORMATICS, 2013, 29 (12) :1504-1510
[19]   Predicting the Functional, Molecular, and Phenotypic Consequences of Amino Acid Substitutions using Hidden Markov Models [J].
Shihab, Hashem A. ;
Gough, Julian ;
Cooper, David N. ;
Stenson, Peter D. ;
Barker, Gary L. A. ;
Edwards, Keith J. ;
Day, Ian N. M. ;
Gaunt, Tom R. .
HUMAN MUTATION, 2013, 34 (01) :57-65
[20]   ROCR: visualizing classifier performance in R [J].
Sing, T ;
Sander, O ;
Beerenwinkel, N ;
Lengauer, T .
BIOINFORMATICS, 2005, 21 (20) :3940-3941