The adsorption of carbon(II) oxide and ammonia on nanofilms of solid solutions and binary compounds of the CdS-CdTe system is studied by means of piezoquartz microweighing, FTIR IR, and measuring electroconductivity. Allowing for the conditions and composition of semiconductor systems, we determine the mechanisms and principles of adsorption processes by analyzing the alpha (p) = f(T), alpha (T) = f(p), and alpha (T) = f(t) experimental dependences; IR spectra; the thermodynamic and kinetic characteristics of adsorption; the acid-base, electrophysical, and other characteristics of adsorbents; the electron nature of adsorbate molecules; and the obtained acid-base characteristics: the composition and adsorption characteristics and composition state diagrams. Previous statements on the nature and retention of local active centers responsible for adsorption and catalytic processes upon changes in their habitus and composition (as components of systems of the A(III)B(V)-A(II)B(VI) and A(II)B(VI)-A(II)B(VI) types) on the surface of diamond-like semiconductors are confirmed. Specific features of the behavior of (CdS) (x) (CdTe)(1 - x) solid solutions are identified in addition to general features with binary compounds (CdS, CdTe), as is demonstrated by the presence of critical points on acid-base characteristics-composition and adsorption characteristics-composition diagrams. On the basis of these diagrams, the most active adsorbents (with respect to CO and NH3) used in designing highly sensitive and selective sensors are identified.